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1. Introduction and Summary

This report describes the research activities in the Information Systems

Laboratory (ISL) at Stanford Universty on Distributed Sensor Networks (DSN). Our

effort is part 0r--a--U A-.us.d programi wih .tpar aj_-C L veral

contractors. ')The objectives are to develop new and innovative signal processing

and computer network te.niques with applications to systems employing
.

multiple sensors for target surveillance and tracking. Such systems would be

composed of sensors, processors, and data bases distributed throughout an area,

interconnected by a suitable communication system. The system will serve a

usr-community that is also distributed and connected to the same communication

system.

A basic premise of our approach is that most of the currently available signal

processing algorithms are not well suited to the DSN problem because of their

highly centralized structure. The straightforward application of standard

techniques in tie context of distributed networks leads to ad hoc, suboptimal

designs. We .--ei that it is essential to have a more careful look at the basic

requirements for developing and implementing distributed algorithms. Our

preliminary conclusions were that improved system performance and a more

natural system structure will result if innovative signal processing modules will

be used; new analytical and computational techniques have to be developed and

used in the DSN design, rather than trying to adapt this problem to standard

solutions. Accordingly, the major emphasis of our research effort to date has been

the development of novel signal processing algorithms which are especially suited

to the DSN.

The impact of these optimal distributed algorithms on the overall network

design was also addressed. This effort is currently in the developmental stage, but

some very promising preliminary results have already been obtained.
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DSN System Structure

The Distributed Sensor Network contains various classes of sensors and is

required to provide different categories of user information. Therefore, the DSN

*: system must have a collection of signal processing modules which can be used in

different combinations according to the sensors adopted and the type of

Information requested.

Another feature of the DSN is the wide range of data rates appearing in different

system components: from the wideband "raw" sensor data to the relatively low

bandwidth summary information required by the user. A related aspect is the

communication bandwidth requirements between different system components. A

local set of sensors may have to exchange high-rate data to perform the necessary

. signal processing (e.g. cross correlation); sensors from separate regions may only

need to exchange low-rate target parameters (e.g. bearing and range estimates) to

generate location/velocity estimates. Finally, the communication between the user

and the network may be at even lower rates.

-This type of basic consideration has led us to a hierarchical system structure,

where different levels have different signal processing modules.

At the top are the user entry points and inter-user communication. The

interface between the user and the network also includes more complex functions

such as combining and synthesizing data sets provided from different regions.

0O At the next level are the regional processors which can assemble the answers to

user questions required on a local level: e.g. combine bearing measurements from

several data sources to give target location estimates.
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Parameter-list processing Is the next lower level in the system. Here, some

initial target parameters are processed to provide higher quality information. For

example: time-difference-of-arrival (TDOA) information. is translated into

range/bearing estimates. This level performs relatively complex computations, so

* as to provide the regional processor with easily usable data. Different

parameter-list processors will communicate at moderate data rates.

, It should be noted that the proper choice of parameters to be used by this

processor (both input and output) has a major Impact on system performance and

communication/computation cost. An important part of our work was devoted to

developing and identifying appropriate parametrizations for the target location

problem.

At the lowest level are the front-end processors which operate directly on the

"raw" sensor data. These processors provide relatively low quality target data

parameters which are then processed by the parameter-list processor. Local sensor

sites may need to communicate at high bandwidth to compute these parameter

estimates. The sensor together with its front-end processors can be thought of as a

single "smart sensor" unit.

I
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Signal Processing Modules

The ISL project group has been responsible for a number of novel theoretical

developments in the area of algorithms for signal processing, estimation -

identification and control. We have applied these approaches to the development of

several signal processing modules, which will provide the components for the DSN

system described earlier. These include:

- Real-Time ARMA and Delay-Differential System Modeling.

This is a new approach which provides a unifying framework to

multi-target bearing and spectral signature estimation.

- The Linear Equation Approach to the Target Location Problem.

Our approach provides efficient algorithms for computing target

location from time-of-arrival differences, in a distributed fashion.

- Distributed Kalman Filtering Algorithms.

Some ideas from scattering theory were used to derive new distributed

versions of the Kalman filter applicable to the target tracking problem.

- Image Reconstruction Techniques.

Algorithms which were developed to reconstruct images from projections

(e.g. for computer assisted tomography, in medical applications) are

used to estimate target location from lists of partial target information

(e.g. bearing only or range only).

- Event Detection.

An innovative approach to handling inordinate amounts of sensor data, this

class of algorithms identifies significant "events" in the data (e.g.

appearance of a new target, or change of course of a target under track),

° 6
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and limits the processing effort to the neighborhood of these events.

- Two- and Three-Dimensional Signal Processing.

This Is a mathematical framework which treats the target location problem

as a multi-dimensional imaging problem.

The rest of this report contains:

(i) A more detailed description of our overall approach to

the distributed sensor network organization, section 2:

Distributed Sensor Network Design.

(i) An overview of the signal processing modules which have been

developed or are currently under development. These modules

are the building blocks of our DSN system design, section 3:

Signal Processing Modules for DSN.

(Iii) A collection of three papers presenting the details of some

of our processing modules:

A System Identification Approach to Locating Spatially

Distributed Targets.

Source Location from Time Difference of Arrival:

A Linear Equation Approach.

Distributed Algorithms for Estimation and Detection.
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2. Distributed Sensor Network Design

The detailed design of a sensor network depends Intimately upon the choice of

sensors, the characteristics of the input signals, and the specifications of the output

requirements. Thus, only the outline of a system will be proposed. Several classes

of sensors will be considered, and alternative algorithms will be introduced, to be

selected later depending upon the characteristics of the input signal.

An important caveat is that this is our current best guess at an organization for

such a network, based upon our recent work in multichannel and distributed

algorithms. Some aspects of this design are well understood, others are very poorly

understood. For example, performance bounds of individual algorithms can be

readily obtained; the interactions and overall performance of systems of

algorithms, however, are much harder to predict. In addition, the proposed

partitioning into modules may be obviated by future work.

Figure I presents a preliminary system organization. User output consists of

target location and, perforce, target detection. C Other target information, such as

reflection coefficients, acoustic spectra, etc., will also be available as secondary

results.) Input derives from three classes of sensors: omni-directional,

single-dimensional, and multi-dimensional. Omni-directional sensors are rich in

information content but provide only indirect location data. The

single-dimensional sensors provide, for example, range-only or bearing-only

information. This information must then be integrated into the data from the third

class of sensors, which provides location information (e.g., range and bearing)

directly. The integration process should take into account that measurements have

varying error probability distributions or, in the worst case, are erroneous.

8
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The processing can be partitioned into four stages: front-end sensor processing,

parameter-list processing, regional processing and the user interface. Front-end

processing transforms raw sensor data into target paramters suitable for refinement

at later stages. For example, the omni-directional sensor processors could provide,

as output, range, bearing, or time-of-arrival (TOA) information. This step typically

requires tight, high-bandwidth coupling between sensor processors if, for

example, cross-correlation is required.

The parameter-list stage accepts lists of target-parameters as input and produces,

as output, components of the location. This processing step typically requires

information from a local neighborhood of sensors; a good example would be the

synthesis of target location from time-of-arrival input.

At the third stage, information from regional groups of sensors is combined. The

regions may be large, and the information is typically imperfect and redundant.

The final stage then integrates all information into an output desired by the user

community.

Front-End Processing

Much of the front-end processing is best described in the context of developing

an algorithm, such as the Extended Kalman Filter, which cuts across many stages of

ssing. As shown in figure 2, however, the front-end processing required for

om. lirectional sensors can be considered as an integral unit.

", te frequency-wavenumber block -- which produces, as output location

lnfoi mation -- and the long-baseline cross-correlation (without pre-whitening) --

which produces time-difference-of -arrival (TDOA) data -- were presented by

Lincoln Laboratories in their initial strawman proposal (Lincoln [78]).
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The ARMA modeling block (see Section IV and Appendix B of [FM]) Is a

refinement and unification of these approaches. Using high-resolution, spectral

estimation (maximum ,i'elihood or maximum entropy techniques) would refine

the data provided by the strawman algorithms. More precise bearing and TDOA data

will be available, as well as a host of other auxiliary parameters.

The fourth block (see also figure 3), using ladder forms, begins with a data

compression stage. Each sensor's data is processed independently to detect

discernable changes in the data (events). compression is a two step procedure: first,

the data passes through ladder-form filters which identify and locate changes,

producing a log-likelihood function; second, an event detector scans this function,

looking for significant events and thereby generating TOA data. If the events are

precise enough this data can be combined trivially to get TDOA information;

alternatively, the raw-data near the event can be exchanged among sensors and a

multi-channel ladder-form filter can be used to generate a Joint log-likelihood

function, and TDOA information thereby.

[ The existence of "events" or similar signal characteristics is largely an

unexplored question at this moment. Preliminary analysis of various signal signal

sources has shown that speech and certain other acoustic signals display "events"

(in speech these could be either 1.dosive sounds or voiced speech). The recent

availability of our efficient recursive ladder-form algorithms enabled the

"discovery process" of such events.]

These four algorithms, which convert omni-directional data into components of

a location vector, can be compared along several dimensions: the expected

characteristics of the input signal, the accuracy required in the output, the

bandwidth required for inter-sensor communication, and the algorithm's

amenability to distribution.

12
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The frequency-wavenumber processing of local arrays of sensors, as proposed by

Lincoln Laboratories, is a good example of an independently distributed algorithm

that requires minimal communication between sensor sites. The FFT approach,

however, has several drawbacks, since information is thrown away

(cross-correlation data) and since the resolution is limited because of the effect of

windowing and finite record length.

Long-baseline cross-correlation, in contrast, distributes very poorly, and

requires very high inter-sensor communication bandwidth. Also, for the Lincoln

Laboratory study, the algorithm produced poor results. Pre-whitening the data on

input may improve the output this block, but long-baseline inteferometry

processing will still require high-bandwidth inter-sensor exchange of the raw

data.

The ARMA modeling is an intermediate solution, which replaces both the FFT

and the cross-correlation processes; as would be expected, this approach also

typically requires high-bandwith data exchange. However, these algorithms

promise to yield superior results; assumptions concerning periodicity and the noise

spectrum have not been made, and time-varying sources can be tracked. In

5addition, and in contrast to FFT and cross-correlation algorithms, ARMA modeling

produces a minimal parameterization (parsimonious output), introducing well

behaved data reduction at this early stage of analysis.

The communication drawback associated with ARMA modeling can be partiallyi-

alleviated if we can use Matrix Fraction Description Models (MFD) in the ARMA

block (see section 4). Then, the number of variables communicated is neither a

function of the number of sensors nor of the amount of raw sensor data, but rather

is a function of the needs of the user (i.e., of later stages of processing).

The fourth block distributes well and promises good communication

14



characteristics (as can be seen from figure 3)1 the compression process implies only

exchanging data about significant events, and possibly the raw data immediately

surrounding those events. The first two stages are independently distributed, and

require no inter-process communication. The output is raw sensor data, but the

event detector only produces packets immediately surrounding statistically

significant events. The final step, the determination of TDOA Information, requires

inter-process communication, but if the quality of events is very high, only the

time of the events needs to be communicated, in the worst case, the packets of raw

data would be exchanged, which would still have a comparatively low-bandwidth.

Thus, if these algorithms are applicable to specific instantiations of the DSN

concept, then we will have the high-resolution of an ARMA model with a very

high degree of distribution and comparably low communication bandwidth

rqquirements.

In summary, turning again to figure 2, we see that raw sensor data provides

input to the front-end processors. As output, we receive parameter-list

- . information, often redundantly: two algorithms provide bearing information,

three provide TDOA data, and several provide target paramters. This data, with its

associated error statistics, will be integrated in subsequent processing stages.

Parameter-List Processing

Given time-difference-of-arrival information as input information, the

traditional algorithm for determining location involves combining results from at

least three sensors to determine the intersection of a set of non-linear curves (see

figure 4). The computational burden of such an approach is extremely high. With

a sufficient number of sensors, however, it is possible to determine the target

location using linear equations. This significantly reduces the computational

I"- . . . . .> . . ,. .1 5 .
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burden, simplifies the problem of distributing the algorithm, and provides for

graceful degradation as sensors fail. The largely open questions concern the

behavior of these methods in the presence of noise, finding effective organizations

for distributing these algorithms while retaining robustness, and determining the

communication bandwidth requirements. Our approach has the potential of

producing algorithms that have very favorable answers to these questions, (see

Section 6.)

Extended Kalman filters are another class of parameter-list processing

algorithms; a basically non-linear problem is continually re-linearized, with all

unknown parameters included in the state. Although these methods are very

popular in current centralized approaches, cooperatively distributed forms with

reasonable communication bandwidths have been difficult to obtain. At the

moment we can only suggest independently distributed approaches that are based

on efficient exchanges of data, coupled perhaps with "event" detectors.

The difficulties with this approach arise because the linearization of the

underlying nonlinear model and measurement equations obscures the structure of

the generally well understood underlying physical processes. 'Furthermore, the

nonlinearities make a performance analysis of these distributed filters very hard to

obtain.

I
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Regional Processing

Given information such as bearing-only or range-only data, back-projection is a

well known technique for integrating this partial data into a single framework

that will localize the target position. Intrinsically, this stage of data integration

requires that each processing site have data from a large number of adjacent sites,

i.e. those other sites whose sensors overlap the site in question. At this level,

however, the communication requirements are typically reduced compared to

earlier stages, although the computational burden may be very large.

The important enhancement we propose for this stage introduces error

assessments into the back-projection process. With most sensors, some

measurements have a greater confidence associated with them than others; this

information should be incorporated, especially when using disparate sensor types

or redundant measurements. The thesis of S. Wood [Wood] has analyzed the

applicability and performance of state estimators to this problem. She demonstrated

that significant performance improvements can be achieved over naive techniques,

especially for ill-determined, constrained, or high signal-to-noise-ratio data.

Summary

An outline of possible component blocks for a distributed sensor network with

cooperatively distributed processes has been shown in figure 4. Various

constituent modules have been proposed; the choice of which blocks to implement

in a given system depends upon the sensors available and the characteristics of the

data. Several modules redundantly compute, for example, bearing or TOA

information; only from an analysis of specific applications can we select the

4 optimal configuration.

4
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3. Signal Processing Modules for DSN

This section presents a brief summary of the types of algorithms we have

investigated, the results obtained, and the various questions that still need to be

answered. The approaches we have used can be classified into the following

categories:

- Real Time Source Modeling (System Identification, ARMA)

- Constant Source Parameter Models (CSPM)

- Matrix Fraction Description Models (MFD)

- Ladder Forms for "Event" Detection, (LLL)

- Multisite Lateration (MSL)

- Distributed State Estimation and Hypothesis Testing (DSE)

- Distributed Information Filters (DIF)

- Image Reconstruction Techniques (IRT)

- Two and Three Dimensional Signal Processing (2&3-D Systems)

- Partial Differential Equation Models (PDE)

- Delay Differential Equation Models (DDE)

3. 1. Real Time Source Modeling

0
We are Investigating a new approach to target bearing (or time-of-arrival)

estimation by using system identification techniques. In this approach the

parameters of an auto-regressive moving average (ARMA) model are chosen for best

fit to the observed time series. If the source is purely autoregressive it can be

shown that the moving average part of the model contains direct information about

• :.-. -.--,,,,-. , - --.. ... -'.. ., .-.. . . . ,. . . . . . . . . . .. . .. . .. . . . .... .. . .
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the TDOA, while the auto-regressive part represents the dynamics of the source

process. Thus, identifying a system model provides information about the source

bearing and about its spectrum.

Following this observation, we developed a new estimation scheme for TDOA

which has a number of potential advantages over the more conventional estimator

structures:

- No prior knowledge of the noise spectrum is required,

since the proposed scheme automatically performs spectral

estimation.

- By adaptively varying the ARMA coefficients to minimize an error

criterion this estimator can handle nonstationary source processes

(time-varying statistics) or moving sources (time-varying TDOA)

- Efficient recursive algorithms are available for computing

ARMA coefficients for vector time series.

In summary, we applied system identification techniques to obtain a

computationally efficient solution to the TDOA estimation problem, using our "fast

algorithms". Other techniques for identifying the ARMA coefficients can be

applied: repeated least squares, generalized least squares, maximum likelihood,

instrumental variables, etc.

A major challenge of this approach is to obtain distributed forms of these

algorithms, because of the inherent high complexity and tight coupling within

these algorithms. One of the more promising methods we are exploring is based on

information filter forms and "Matrix Fraction Descriptions" (MFD's), a dual

representation of ARMA models. These forms can take better advantage of the

20
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inherent physical structure of the source location and characterization problem,

e.g. the modeling of the "cascade" of source, propagation medium and receivers.

This combination can actually more accurately be described by delay-differential

equations, also a topic under investigation.

One potentially very important feature of these alternative forms is that their

required communication bandwidths will not be a function of the number of

sensors involved in a DSN but rather the number of sources. This is due to the fact

that these models can separate the source and propagation models effectively. An

other feature is the possible trade-offs, such as storage versus communication. For

example, if in the source spectral information can be made available to the sensors

and estimates are required only relatively infrequently, the number of variables

communicated in the network is again neither a function of the number of sensors

nor of the amount of data gathered at the sensors. In other words the sensor can

effectively concentrate the received data, only communicating data that is of

interest to the user. Section 6 describes some of the forms of distributed algorithms

required for this application. The distributed algorithm for this case would in

addition take advantage of Matrix Fraction Descriptions, that can effectively be

used to provide beam-forming and subsequent dptimal filtering.

A detailed description of our results in this area can be found in section 4 of this

report: "A System Identification Approach to Locating Spatially Distributed

Targets."

Ladder Forms for Log-Likelihood Detection

In a separate report on "Fast Parameter Tracking via Ladder Forms" (ML] we are

reporting on the development and applications of ladder forms for on-line

parameter estimation and tracking for single and multi-channel data. One of the

•~ ~ ~~~ ~~~~~~~~~~ " " o ' " .o ' ° .. - ° . , - ' . " .- . -o P o . .. ." '. . -. .* -. .° - ' ""O "



major "discoveries" made in this report is the appearance of certain likelihood

variables as optimal stepsizes in these recursive algorithms. Their extremely

interesting behavior to jump components or "outliers" in the data create an interest

in these variables in their own right, as well as in the many potential applications.

An innovative approach to handling inordinate amounts of sensor data, these

algorithms can identify significant "events" in the data (e.g. any discontinuity in a

source, such as a change of course of a target under track). These discontinuities

effectively provide a "sample-and-hold" capability to a parameter tracking

algorithm, hence limiting the necessary processing effort to the neighborhood of

these events, and providing a "time marking" capability of signals (useful for TOA

estimation). In addition ladder forms are also very useful in data compression in

order to reduce storage and communication requirements. Some of these

applications were explored in the context of speech and other signals, see also

[ML]. An example of processed acoustic data from Lincoln Labs (Lincoln [78]) is

given in figure 5, where the "original" seismic signal during the closest approach

of a fly-by, the i-th reflection coefficient K(i) and the likelihood variable gamma(i)

is displayed. We note that even though the data was highly processed, the

likelihood variable clearly shows distinct impulse like components or "events".

Also note the change in the signum of K(1), a sign for the change in doppler

frequency from positive to negative. These examples are clearly preliminary

results, but they show the promise of our approach.

22



-zon

7CC

z5 50s 75 Igo

I s, ve~t

* it-T

z o? g

go 06 1e

Data: A7-Jet; Receiver- geophone, SAV;
Samples: 1926-2025; Time: 6/27/77 5:36:30.00;

Figure 5a.



-7 17eeI

zoos

C -Inn@

25 so 69IS

to 09 - SII

C\75te

I E

Data- A7-jet; Receiver: geophone, SAV;
Samples: 1926-2025; Time: 6/27/77 5:36:30.00;

Figure 5b.

* . -.. . . . . . . . . . . . . . -.



3.2. Multi-Site Lateration (MSL)

Progress has been made on a solution to the multisite lateration problem using

only time-of-arrival measurements which require only solutions to linear

equations. This possibility was announced at an earlier site visit, and has now been

confirmed (see also [Schmidt]). The significance of demonstrating the linearity of

these equations arises because linearity is a sufficient condition for a distributed

form of the algorithm. Any subset of sensors can optimally combine estimates of

source/sensor coordinates, and these estimates can be combined globally using a

variety of hierarchical organizations. The advantage of the linear equations is their

inherent fail-soft property from N down to 4 stations, i.e., we have an "automatic

re-configuration", since delayed or even missing measurement beyond at least 4

independent measurements have no catastrophic failare effects. The additional or

missing measurements only raise or lower the confidence in the estimates to some

degree. (Even the 4 station (linear) solution has at least a single non-linear

fail-soft property, i.e. nonlinear solutions can be used If one link fails.) DSN

systems based on "minimal" but nonlinear 3 independent station solutions however

can not fail-soft! A single measurement or link failure can give catastrophic

degradations i.e. a breakdown of the whole system in the worst case, since no

redundancy would be present, a case that should definitely be avoided!

. It is perhaps surprising, but not hard to prove by verification, that a linear set

of equations can be given for the Euclidean coordinates of a source given range or

range-difference measurements (or equivalently TOA or TDOA measurements.) The

fact that the multi-site lateration problem (a set of quadratic equations) can be0
reformulated as a problem of solving linear equations, is reminiscent of a similar

situation in least-squares estimation, where solutions to quadratic equations
(quadratic cost) can be obtained solving linear equations (using orthogonal

transformations). The multi-site lateration problem has the flavor of an inverse

least-squares problem. A detailed description of one of our approaches to this
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problem can be found in section 5 of this report " Source Location from Time

Difference of Arrival: A Linear Equation Approach."

3.3. Distributed State Estimation and Hypothesis Testing

Since many of the estimation schemes are based on state estimation formulation

(e.g. the Kalman Filter), it is important to investigate distributed versions of state

estimators. A simple form of a distributed information filter was presented in the

appendix of our first DSN report. Various attempts have been made in the past to

distribute the Kalman Filter. However, its inherent complexity and the high

interaction between variables makes this virtually impossible, in the sense that

either a lot of communication will be necessary (in a cooperatively distributed

approach) or many variables have to be recomputed locally (in an independently

distributed approach). The information filter form appears at the moment to be

better adapted to distributed computations than the covariance (or Kalman) filter

equations. In some cases, such a brute force implementation or distribution might

be unavoidable. However, there are interesting cases where efficient distribution

of the computations can be achieved by taking advantage of the structure of the

problem. Triangular coupling of subsystems and degeneracies or non-existence of

driving noises leads to efficiently distributed algorithms. Fixed sources or moving

targets with piece-wise linear tracks are all examples of CSPM's.

An alternative solution is possible if global estimates rarely have to be

computed, or local estimates have to be "synchronized" at a slower rate than the

data that Is gathered at the sensors. If these synchronization time points and the

organization of sensors for obtaining a global estimate are agreed upon by the

sensor sites by the time of the start of a new period, we can use our parallel

processing algorithms, (see [Morf, Dobbins, Friedlander, Kailath], (Dobbins]) to

develop essentially Independently distributed algorithms that are communication

bandwidth constrained. We can either fix a maximal deviation in the
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error-covariance of all estimates and determine the necessary synchronization

intervals, or we can determine these intervals by fixing the communication

bandwidth and thereby limiting the number of information exchanges necessary to

achieve the global synchronization. The equations can be derived relatively easily

using our scattering theory approach to least-squares estimation, see e.g.

[Friedlander]. A detailed description can be found in section 6 of this report:

-. "Distributed Algorithms for Estimation and Detection."
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3.4. Two and Three Dimensional Signal Processing

Our work on two and three dimensional signal processing is characterized by

two efforts.

a) A basic mathematical approach has been developed that Is aimed at providing the

proper mathematical tools such as state space models and transfer function or

frequency domain representations. We have, in the meantime, obtained very basic

results that may have a great potential impact on the problem of obtaining truly

distributed solutions to two and three dimensional signal processing, see [Levy],

[LevyMorf]. However, their real significance is still hard to evaluate, partially

because one of the basic results we are hoping to obtain is still missing: a

demonstration of the existence of innovations representations for two and three

dimensions.

One of our basic results shows that some of the structure of two dimensional

problems are definitely different from three dimensional equivalents. For

example, the idea of implementing filters in a cascade form, very basic in one

dimension, generalizes (even for multiple channels) to two dimensions; however,

this is not true in three dimensions. This result does not imply that solutions do

not exist in three dimensions, it only points out that solutions in three dimensions

can look quite different from the lower (one and two) dimension equivalents.

b) As discussed in the Tutorial Survey presented at CMU, one method for estimating

source probability distributions is based on image reconstruction techniques, (IRT).

The comparatively simple back-projection technique, (see e.g. [Lincoln Lab, CMU

workshop],) does not, however, lead to the best estimate of the source distribution,

but rather to what is known in the estimation literature as a special case of the

information state, see e.g. [Wood]. More precisely, the information state is the

product of the best estimate times the inverse of the error-covariance: a "smeared
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7.

out" version of the best estimate. The best estimate can be obtained either by

carrying along the covariance matrix (recursively) and multiplying the

information state by the inverse, or by recursively computing the best estimate

directly. We showed that the direct approach is equivalent in the continuous limit
.- to the so-called "convolve and back project" solution, whereas the information

filter approach is a "first back-project then convolve" solution. The latter

currently appears to be more adapted to distributed computations; however, one of

our earlier fundamental results showed that both approaches are linked via an

inversion duality, hence ultimately we might also be able to find efficient

distributed algorithms for the direct form. Both forms generally involve carrying

along a form of the covariance matrix (a matrix with n2/2 entries in general, where

n is the number of variables to be estimated). The memory requirements for a

brute-force implementation of these methods could, therefore, be prohibitive. One

advantage, however, is that no limit on the number of targets is required, since a

spatial discretization Js used. This implies that targets are lumped together if they

are within a single spatial "bin". Other advantages of this approach derive from the

linearity of the optimal estimator (for Gaussian distributions), from flexible

distributing computations, robustness of the source distribution estimates, and

"automatic reconfiguration" after sensor losses. We are still studying the

implications of this approach on computational and communication requirements,

as well as other system parameters. Our recent results in 2-D systems (Levy,Morf]

are expected to play an important role in this context, in particular in displaying

and exploiting sparseness of matrices for computational and other benefits.

3.4. 1 Delay Differential Equation Models

Since sources emit signals that generally have a line spectrum and that

propagate (i.e. are delayed) through a medium, we can conclude that natural

mathematical models are systems of delay-differential systems. B. Levy was able to

show In his thesis that in the generic case at least two sensors are required in order

to be able to observe (or two inputs in order to control) a delay-differential system.

* --.- ..
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This implies that a (generally moving) source can be located from appropriate

measurements of only two sensors, e.g. time and frequency of arrival type

measurements of two sensors can be sufficient for estimating the trajectory of a

source! This is a very fundamental mathematical result; its full impact on the DSN

problem remains to be determined.

We may note that our other approaches that are based on ARMA and MFD models

essentially make use of discretized delay-differential equations, hence their

structure is inherited by the discretized equivalents.
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A System Identification Approach to Locating

Spatially Distributed Sources

.,. B. Friedlander*, M. Morf :*

Abstract

A new framework is presented for treating the problem of estimating the

location of a multiple of point sources from multi-sensor measurements.

Estimating the source location is formulated as a system identification problem for

the system consisting of the source and propagation models. It is shown how the

time difference of arrival (TDOA) can be found from the system parameters.

Features of the proposed approach include: simultaneous estimation of multiple

sources, capability of handling multipath propagation and nonstationarity of the

source and noise processes, and simultaneous estimation of the source location and

its spectral "signature". The basic concepts are described in detail and some sample

algorithms are presented. A number of interesting connections between the source

location problem and system theoretic issues are presented.
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I. Introduction

In many practical problems it is necessary to determine the location of signal

(and noise) sources from measurements provided by one or more sensors. Typical

applications include:

- Acoustic surveillance systems (e.g., detection of low flying aircraft);

- Seismic arrays for seismic exploration, monitoring earthquakes and

nuclear explosions, or detecting vehicle movements;

- Antenna arrays for radio astronomy or electronic surveillance

(e.g., direction finding);

- Multiple radar systems for detection and tracking.

In the simplest case the sensor outputs consist of amplitude scaled and delayed

replicas of the waveform from the distant source, corrupted by additive noise. One

of the most widely used methods of estimating the location of the source is by

finding the time-difference-of-arrival (TDOA) of the propagating signal to the

different sensors. It has been shown [1-2) that all the information about the

source location (range and bearing) is contained in these time-df-arrival

differences (TDOA's), or equivalently, in the difference of the sensor/source range

for a pair of sensors. In other words, estimating the source location is equivalent in

some sense to estimating TDOA's for the various sensors.

Methods for estimating TDOA, such as maximum likelihood estimators, were

developed by several authors [3-4]. These estimators are usually implemented by

using one of the following structures:

-, ....... ,........... . ........ .,,.......... . . . ..,



(i) A beamformer (with appropriate pre-filtering) followed by a square-law

3 device and an integrator.

(ii) Pre-filtering followed by a multiplier correlator.

The computations are often performed using Fourier transforms, but time-

domain implementations are also quite common. Various suboptimal TDOA

estimators have also been derived [4]. The TDOA estimator is by no means the only

method for estimating source location, but it provides a convenient prototype for

our discussion. !,r details about other approaches, see [5-8].

These estimators have been successfully used on a variety of applications. There

are, however, certain aspects of the currently used techniques which are

somewhat unsatisfactory. For example:

- Most of the estimators are designed to be optimal for the single source

case. When multiple sources are present they are considered one at a time

(while other sources are thought of as "interference"). In general the

treatment of multiple source proceeded in an 'ad hoc' fashion and there

is a need for a more systematic approach.

- The performance of most estimators is degraded in the presence of multipath

propagation.

- These approaches are highly centralized and do not seem to be easily

adaptable to distributed processing. The current trend toward using multiple

micro- and mini-computers rather than a single powerful central computer

makes it very advisable to develop algorithms suitable for distributed

processing. In addition to cost effectiveness, distributed systems have

./'.. . . - -"
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other potential advantages like speed and high reliability (survivability).

These and other consideration provide motivation for searching alternative

I -approaches to the source location problem.

In this paper we introduce a new framework for estimating TDOA's or source

location. The objective of this paper is to outline our approach and indicate some

interesting connections between the source location problem and system theoretic

issues. We limited ourselves here to a general discussion of the issues and deferred

many of the details to later papers.

The basic idea is to use system identification techniques to estimate the

parameters of the system comprised of the source (or sources) and the sensors. The

TDOA estimates can then be easily found (even for multiple sources) from these

system parameters as will be shown in the next section.

The proposed approach leads to new estimator structures, quite different -from

the classical beamformer or cross-correlator. This new estimator has a number of

desirable features including:

(I) Estimating multiple-source locations.

The conventional TDOA estimators treat a single source at a time and treat any

other sources as noise or interference. In Section III we will present an optimal

estimator for multiple-sources.

(ii) Simultaneous estimation of source location and its spectrum.
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In many applications (e.g. passive sonar) one wishes to estimate the source

spectrum for recognizing or classifying the source type (i.e. finding its spectral

"signature") or for other purposes. The process of spectral estimation is usually

carried out separately from the source location estimation. In the proposed

approach these two aspects of the problem can be handled simultaneously. This

leads to the possibility of using a priori information about the source spectrum to

enhance detection of specific source types while rejecting other source types. In

other word, the approach has a certain built in discrimination capability.

(iii) Capability of handling multipath propagation.

In many cases the source signals find several different propagation paths (with

different delays) to the sensor. These multipath signals are capable of "confusing"

some of the TDOA estimators and degrading their performance. Insensitivity to

multipath propagation is an inherent feature of our approach, as will be discussed

in Section II.

(iv) Tracking moving sources and adaptivity.

Some implementations of our proposed approach (Appendix A and B) are capable

of tracking (even rapidly) time-varying system parameters and therefore capable of

tracking moving sources. Furthermore, these algorithms are capable of performing

optimal estimation (e.g. in the least-squares or maximum likelihood sense) for

nonstationary processes. This is a favorable property since in many applications the

assumption of stationarity does not hold (even if the source is not moving). In fact,
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the adaptive nature of these algorithms makes possible optimal estimation without

prior knowledge of the source or noise statistics.

The structure of this paper is as follows: in Section II the basic approach is

described in detail for the case of a single autoregressive (AR) source. In Section III

the approach is applied to multiple AR sources, and some of the difficulties

involved are discussed. Section IV summarizes possible extensions of our approach

to a more general class of sources ( autoregressive moving-average, ARMA), to

moving sources and to direct estimation of source location (rather than TDOA).

Finally, it should be noted that the emphasis in this paper is on the conceptual

development of a unifying framework for processing multi-sensor multi-source

data. We will not go into the details of deriving the actual algorithms (some of

which are presented in the appendices) or into various numerical and other

practical issues involved in the actual application of such algorithms. These will

be treated in later papers.
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II. A Single Autoregressive Source

To illustrate the basic ideas of our approach we start with the following simple

problem as shown in Figure 1. Two sensors are measuring the signal propagating

from a source located somewhere in the plane. We assume that the propagation

involves only some time delays and attenuation. Thus, the outputs Yl, Y2 of the

two sensors can be modeled as:

yl(t) = x(t-T 1 ) + hi(t) (la)

Y2(t) = c x(t-r 2) + n2(t) ,(b)

where f1 , 7 2 are the propagation delays from the source to the two sensors, c

represents attenuation and n I , n2 are independent measurement noise processes.

The time sampled version of these outputs will be written as:

yl(k) , x(k-D 1) + n1(k) (Za)

y2(k) * c x(k-D 2) + n2(k) , (Zb)

where

t,,k At , I D1 At , - D2 At.

Note that the delays "1, T2 are assumed to be integer multiples of the sampling

period. No difficulties arise when 7"1, T2 are non-integer multiples provided that

the sampling period At is properly chosen. This point will be discussed in more

detail later.

The source process x(k) is an autoregressive process of order n, i.e.

it

x() = - ai x(k-i) + u(k) (3)
i,,l

where u(k) is a white driving process. Taking the z-transform of equation (2) we

7
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get

Y1(r) * 'D1 X(z) + N1(z) - Z-D 1 U(Z) + N1 (r) (4a)
%'i3.

(z)
Y(Z) X(z)+ N2(z) 2 zD U + N (4b)
2(z) a(z) 2(z) , (4b)

where

a(z) - 1+ ai z -i  (5)

Written in vector form the transfer function from the driving process u to the

sensor outputsyl, Y2 is

Y(z) - B(z) X(z) + N(z) . B(z) a- U(z) + N(z) , (6a)

where

, ") b2(z) C Z '2 (6b)

Note that the numerator of this transfer function contains the information about

*' the target location (i.e. the TDOA), while the denominator contains the dynamics of

the source process.

This simple example suggests the following method for estimating TDOA: fit an

ARMA model to the observed time series y(k). That is, find coefficients { aj, Bi },

where

it n
y(k) a - ai y(k-i) + , Bi u(k-i) + e(k) , (7a)

where e(k) is a correlated noise process given by

e(k) - n(k) + ai n(k-i) (7b)

For simplicity, assume a large signal-to-noise ratio (SNR) in which case e(k) is

negligible. In other words, let

+,+
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y(k) . - a y(k-i) + Z Bi u(h-i) . (8)i-I i-I

This assumption will be relaxed in section III.

The coefficients { ai, B i } will be chosen to best fit equation (7) in the mean

square error sense, by performing system identification based on the observed

outputs y(A). Then, by examining the numerator coefficients Bi, the TDOA can be

found. It should be noted that the numerator polynomial found in this manner

will not be unique, since without having direct measurements of the source x(k)

the absolute delays (i.e. the degrees D1 , D2 of the polynomials b1 , b2 ) can not be

* determined. However, the difference in the degrees of the polynomials bl, b2 will

be unique and equal to the TDOA, A 12  D - D2, which provides the desired

information about the source bearing.

Consider now the case where multipath propagation is present. For example,

assume that sensor I received a delayed version of the direct signal, as indicated in

Figure 2.

In this case

Yl(k) = x(k-D 1) + cI x(k-Di-3 1) +n(k) (9a)

Y2(k) -c 2 X(k-D 2) +' n2(h) ,(b

* where cl represents the attenuation 'he indirect propagation path and 61 its

additional delay. The numerator polynomials in this case will be

61b(z) •Z-Ol + CI z-(D l ;8 1)  (10a)

D2+ (10ba)K: -, b2(z) - z- . (lab)

[ -.
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Thus, the multipath propagation introduces additional terms in the numerator

polynomials. Note, however, that these additional terms will always have a higher

degree than the term corresponding to direct propagation, because of the additional

" delays Involved. Therefore, if we look at the degrees of the first nonzero

coefficient in b(z), b2(z) (i.e. the coefficient of the lowest degree term) we can still

find the TDOA, 'a 12  DI - Dz I

To illustrate this procedure, assume that we performed the ARMA fitting on a

given data set {y(k)j and found the numerator coefficients. As plotted in Fig. 3 the

first significant non-zero coefficient of bl(z) is bl' ,, and the first non-zero

coefficient of b2(z) is b2,4. Thus, the TOA difference in this case is 4 - 2 = 2. The

-. small nonzero coefficients are due to imperfect modeling because of measurement

* noise, while the fairly large coefficients following bl, 2 , bZ,4 are due to multipath

. propagation.

Figure 3 also provides an indication of what will happen if the delays are

non-integer multiples of the sampling period: instead of having a single nonzero

coefficient associated with a given delay, we will have two large coefficients

._ whose relative magnitudes reflect how close the real delay is to the delay

represented by that coefficient. (For example, if A A t s T s (A+1) A t we may

expect both hi'k and bl,(kl ) to be nonzero). In other words, as long as the sampling

* rates are sufficiently high compared to the bandwidth of the underlying process,

the same approach will work for non-integer time-delays.

0 This approach can, of course, be easily generalized to the case when there are

more sensors. In the case of M sensors we have

t
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B(z) . ( b1(z), b.(z), , bM(z) ]T (1 1)

Comparison of the degrees of the first nonzero terms of bi(z) and b (z) will give the'

TDOA, Aij - Di - Dj. The generalization to the case where more than one source is

present is more complex and will be discussed in Section III.

Identification Techniques

The discussion so far has illustrated that infromation about the source bearing,

i.e. TDOA, is contained in the coefficients Bi of the ARMA representation of the

observed measurements. The question remains, how to compute these ARMA

coefficients ( a Bi ) given a set of measurements y(k) )k-0,K•

This type of problem has been widely studied in the context of estimation and

identification of linear systems. Finding { aj, Bi } in equation (8) is usually

referred to as "the case of correlated residuals". A simpler version of this problem is

the following:

Assume that the measurements y(k) are the output of an AR system driven by

white noise v(k)

y(k).- ai y(k-i) + k) (12)
i

Find ai which will minimize the mean square error E { (y(k) y(k)] 2 } where

y(k) - - ai y(k-i). The solution of this problem is fairly straightforward and

typical algorithms can be found in [9-10].

... . . ... ...-.. ...
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As can be seen by comparing equations (8) and (12), in the source location

problem v(k) is a correlated sequence of random variables. In fact it has the form

v(k) Z Bi u(k) (13)

where u(k) is an independent white noise process.

Identifying the system when the sequence of v(k) (also called the residuals) are

correlated is somewhat more complicated. Several techniques have been suggested

to deal with this case, including:

(a) repeated least-squares

(b) generalized least squares

(c) the maximum likelihood method

(d) instrumental variables

" . For references to these techniques see the survey by Astrom [9].

More recently a new approach has been developed by Morf (I 1-13] which

provides efficient forms of the so-called exact recursive least squares algorithms,

i.e. RML I or 2 (see e.g. [14], (15]). These new forms have the added advantages of

computational efficiency and fast parameter tracking capability [16-17]. The last

property is important for tracking moving sources, since the ARMA model

corresponding to such sources has time varying parameters. We will discuss this

further in section IV.

- Another attractive feature of the exact recursive least-squares algorithms is that

they do not require stationarity of the the underlying source and noise process.

This is in contrast to the type of algorithms which are used in conventional array

processing where stationarity is often a necessary assumption. Furthermore, these

-0T



algorithms preserve their computational efficiency under nonstationarity, while

other approaches lead to solutions of increased complexity when stationarity is lost

(see e.g. [20-21 ).

The details of these (and other) algorithms can be found in the references and

the appendices. It should be emphasized that the significance of the problem

formulation presented earlier (equation (8)) is that it makes it possible to apply any

identification technique to the source location problem. The algorithms presented

in the appendices are merely examples. A comparative evaluation of different

identification algorithms in the context of the source location problem has not yet

been performed. However, it is our belief at this point that the exact recursive

least squares algorithms are particularly suitable for this application. Further

discussion of these algorithms and simulation results will be presented in future

papers.

The identification techniques mentioned above provide estimates of aj. B }. As

mentioned in the introduction the coefficients ai are related to the spectral

"signature" of the source. In fact the power spectral density of the source is given

by

R(z) -a(z)a(iz) (14)

Estimating the spectrum by autoregressive modeling is considered one of the

better spectral estimation techniques (see e.g. [18-19], popularly referred to as

"maximum entropy" spectral analysis). We therefore have reason to expect good

performance from our proposed approach.

13
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III. Multiple AR Sources

In many applications the signals received by the sensors are generated by several

sources. Sometimes we are interested in all of these sources, while in other

situations only a subset of them is of interest; the others are merely "interference".

For example, suppose we want to detect low flying aircraft, but the sensors also

receive noise from a nearby generator or truck. The method described here is

capable of simultaneously estimating the bearing (TDOA) of all sources in the area

covered by the sensors. Thus, the existence of point interference sources does not

represent any special problems in this approach. The interference is simply another

source whose parameters are to be estimated. (A good example of "relabeling"

sources appears in the estimation theory explanation of "noise cancelling" discussed

in [ 17]). In the following discussion we will, therefore, not distinguish between

interferers and sources of interest.

Consider an area containing N sources and M sensors (Fig. 4). Each source is

assumed to be of an autoregressive type, i.e.

xi(k) a - xajx(k-J) + ui (k) , . I . . N (15a)
jul

or written in vector form
F1

x(h) - Ax(k-J) + u(k) (15b)
jul

where

I

n max fni)

XWk - x1(k).....xwol))

14
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A= diag [ aij}

Written in the z-transform domain we get

X(z) = A-1(z) U(z) (16a)

where
I,

A(z) - I + =Aj z-j  diag{ A(z)} , (16b)

Aj(z) = I + aij z' (16c)
j-l

In the previous section we have seen that the propagation from a single source to

the M sensors can be represented by a polynomial matrix of dimension M x I. It is

easy to see that in the multi-source case we can write

Y(z) - B(z) X(z) + N(z) - B(z) A 1(z) U(z) + N(z) , (17)

where B(z) is an M x N polynomial matrix (and X(z) is an N x I vector of

polynomials). Each column of this matrix represents the transfer function from

one of the sources to the sensors.

Using the same reasoning as before, we may conclude that the i-th column of B(z)

provides information about the TDOA for signals generated by the i-th source.

Thus, estimating the coefficients of B(z) will essentially solve the multi-source

location problem. Estimating A(z) will, of course, provide information about the

spectrum of each source.

The problem of locating multiple sources and finding their "spectral signatures"

can, therefore, be formulated as an identification problem of a multi-input (N)

multi-output (M) system, see also Fig. 5. All the techniques which have been

15
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developed for system identification can, at least in principle, be applied to solve this

problem. There are, however, a number of difficulties in the multi-source case,

which will be discussed next.

Matrix Fraction Descriptions (MFD)

In equation (17) we have derived a transfer function of the form

H(z) - B(z) A-1 (z) (18)

This type of system representation is called the Matrix Fraction Description (MFD)

of a multi-input multi-output linear system. The properties of MFD have been

extensively treated in the literature of linear systems, e.g. [22-23]. Here we shall

only mention some of the basic facts which are relevant to the source location

problem.

(i) Minimal Realizations and Uniqueness

The MFD representation in equation (18) is clearly nonunique. If T(z) is any

polynomial matrix, we can write

H(z) . B(z) A-1 (z) . (B(z) T(z) ) (A(z) T(z) )-I (19)

i.e. the numerator and denominator matrices can have arbitrary "common factors",

called common divisors in the matrix case. It is useful, therefore, to restrict our

attention to the so-called minimal realization of the system H(z), which is a pair of

matrices 4(z), B(z) which have nrj more "common factors" and which have in some

sense the lowest possible "order". It turns out that the minimal representation of

A.



the system H(z) is still nonunique. The nonuniqueness is due to the fact that a

minimal representation {A(z), B(z)) can be multiplied by any unimodular matrix U

and remain minimal (i.e. {A(z)U, B(z)U} is still a minimal -epresentation).

Unimodular matrices are polynomial matrices whose inverses are also polynomial.

They are the analog of a constant multiplier in the single-input single-output case

where a transfer function b(z)/a(z) can be uniquely determined only up to

multiplication by a constant c, i. e, b(z)la(z) = c b(z)lca(z).

Nonuniqueness of this type may "mix up" the rows and columns of B(z), making

it difficult to extract the TDOA information. If we assume the sources to be

independent, the denominator A(z) in the source location problem has a very special

structure, namely it is a diagonal matrix. Therefore, if we will choose that

particular minimal realization which has a diagonal denominator matrix, we can

get a unique MFD representation of the source/sensor system (under some weak

assumptions which will be met in all the applications considered here). In other

words, the special structure of the source location problem can be exploited to

define a unique representation of the system.

(ii) Left and Right MFD's

The form of the transfer function as given in equation (18) is only one of two

basic forms of MFD's. An alternative representation is

H (z) = A (z ) A(z Y , 
( 2 0)

where W(z) is an M x M polynomial matrix and B(z) is M x N. (A(z), B(z) ) and

A(z), B(z) ) are called Right MFD and Left MFD, respectively.

17



Note that the formulation of the source location problem leads to a Right MFD.

Unfortunately, the process of identifying an ARMA model leads naturally to a Left

MFD. To see this consider a multi-input multi-output ARMA model of the form,
I: It

yWk 114 - Ay(k-i) + B~j u(k-i) (21)
i=l i,-l

Taking z-transforms will give

A

A(z) Y() . B(z) U(z) (22)

or

Y(Z) .3-1(Z) ^B(Z) UWz (23)

where

n
i". () I + i 3 Z-i (24)

i-I

and

B(z) 8i Z s (25)I

Currently available identification techniques provide ways for estimating ARMA

coefficients and will therefore give estimates of the Left MFD ( ,(z), B(z ). In order

to find the TDOA, we will first have to find the Right MFD of the system

A(z), B(z) ), given estimates of the Left MFD. Various techniques for going from

Right- to Left MFD's are available. Recently, some algorithms with good numerical

properties have been reported. Note, however, that in this case we want to go from

a Left MFD to a Right MFD with a specific structure (namely, diagonal A(z)). The

question of how to do this in a reliable and efficient way Is not completely resolved

at this time.
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A more direct approach would be the development of estimation algorithms i ,

(A(z), h(z) ) directly, i.e. identifying the Left MFD. No simple algorithms seem to

be available and further work is needed in this area.

Most of the difficulties mentioned here did not arise in the single-source case.

This was due to the fact that in that case the Left and Right MFD's have a very

simple relationship-

H(z) - B(z) [a(z)] - - [a(z) IM B (z) - W(z)-  (z) , (26)

where IA1 is the M x M unity matrix. The ARMA model fitting procedure gives

direct estimates of the Left MFD in this case, since

y(k) . - (a I y(-i) + B I u(k-i)
i-i i-I

I! nI

In other words, B(z) -(z). (z) - a(z) IA and A(z) - a(z).

In the previous discussions we assumed a high SNR situation where the

measurement noise was ignored. It is important to note that the measurement noise

can be embedded in an ARMA model with a higher dimensional output vector, i.e.

y(k) . - , A y#-i) + Ai u(k-i) + e(k)
i=1 i,,1

where
n

e(k) . n(k) + A n(k-L)
i-1

can be rewritten as

n It

i-I i-O1

let Ci  ro(k-i) (28)
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where

BO- 0. A, 0 mI Co 0 O, 1

The resulting identification problem is that of an ARMA model with a white

driving process w(k) and no measurement noise term. An added complication is the

A

special structure of the matrix Ci, i.e. the identification algorithm will have to

AA

guarantee that the last M columns of Ci will be identical to the columns of Ai. This

requires some modifications of the identification algorithms presented in the

appendices.
l

It should be noted that the more classical approach of beamforming is naturally

related to the right MFD representation, while the identification approach is related

S.to the left MFD. In the single source case, beamforming consists of forming an inner

" product of the data vector Y(z) with a "steering" vector V(z), to get a scalar signal S(z)

which can then be processed further (e.g. to get optimal detection),

S(z) . V(z)T y(z) V(Z)T B(z) X(z)

The steering vector is chosen so that it "removes" the numerator polynomial which

represents the propagation model, i.e. we choose V(z)T so that

V(Z)T B(Z) Z

and then the received signal S(z) is just a delayed (with some delay A) version of

the source signal X(z). To see this more clearly, consider the B(z) given in equation

(6b). In that case

* V(z) . 2L cz?2

0
* 

* * *L.
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In the multiple-source case V(z) will be a matrix which is chosen so that

V(z)T B(z) . diag I z' i } (29)

The numerator polynomial B(z) associated with the steering vector V(z), is that of

the right MFD. Thus, the operation of beamforming can be thought of as finding

the "inverse" of B(z), in the generalized sense of equation (29).

Determining the Number of Sources

In order to perform system identification, we first have to determine the

dimensions of the system, i.e. the number of inputs and outputs. The number of

outputs is, of course, the number of sensors M and is known. However, the

number of inputs is equal to the number of sources N, which may be unknown, or

known only imprecisely. Therefore, it will be necessary to repeat thtt

identification process assuming different numbers of inputs. By observing the

resulti:.g mean square errors (i.e. model fitting errors) the number of sources N can

be estimated. Typically, there will be a sharp drop in the error power (or other

related measures) when the system dimension exceeds N.

The following procedure is, therefore, suggested:

() Get an initial estimate of the number of sources. Such an estimate

can be obtained from some preprocessing of the sensor data and

by keeping track of the number of sources entering and leaving the

area of interest.

21
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(i) Choose the system input dimension to be larger than the estimated

number of sources (i.e. overestimate).

(iii) Perform system identification and observe the error.

(iv) Decrease the input dimension by I and repeat (iii).

(v) Stop when a sharp increase in error is observed. Choose the previous

.dimension to be the number of sources. Use the corresponding system

parameters (ANz), BN(z)) to estimate source location and "signature".

If good initial estimates of the number of sources is available, the amount of

additional computation will be minimized. It is also possible to derive algorithms

that are recursive on the assumed number of sources, such that computational

savings can be made. Other schemes for tackling this problem are possible,

especially in the case of moving sources observed over a sufficiently long period of

time. Details will be presented in future papers.

0
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IV. Some Extensions

The system identification approach can be applied to a wider class of problems

than those discussed so far. In particular, it need not be restricted to AR sources and

MA propagation models. In this section we present several interesting extensions

of these problems and indicate how the proposed approach can be used to solve

them.

IV.1. ARMA Sources

Many sources of interest can be adequately modeled as the output of an AR model

driven by white noise. (In fact any source with rational spectral density function

can be represented this way, provided that the order of the model is sufficiently

high). However, it is sometimes necessary to consider ARMA models rather than AR

models. To see the kinds of difficulties that arise, consider multiple-source vector

x , where

X(z) . B(z) A,'l(z) V(z)

(30a)

and

A (z) - diag ai(z) } , (30b)
SS

BW(z diag { bi(z) } (30c)

The subscript s indicates elements of the transfer function associated with the

source models. As we have seen before, the propagation model is given by a

polynomial matrix representing the delays, attenuations and possible multipath

23



propagation for the sources to the sensor. We shall denote this matrix by B (z)
p

The sensor output vector is

Y(z) " B (I) X(z) i N(Z) u Bp(z) B5(z) A-l(z) V(z) + N(z)

B (z) B (z) B(z)

Note that the numerator matrix B(z) is a product of the propagation model (Bp) and
p

the source MA part. In order to recover the TDOA information it is necessary to

factor B into its components Bp, Ba . This is possible assuming a diagonal structure

for B5 (z) i.e.

B,(z) - diag { b,(z) }

- - Because of this structure, all the elements in a column of BS(z) have a common

factor. In fact b ,(z) will be a common factor of the elements of the i-th column of

B(z). Therefore, the following procedure could be used to perform TDOA estimationi

(i) Estimate A(z), B(z) from the available data

(ii) For each column of B(z) find the common factors. This could be

done by computing the roots of the polynomials and looking for

"root clusters". The columns of B(z) with the common factors

taken out will form 8 (z).
P

(iii) Estimate TDOA from B (z) as in the AR case.

Note, however, that the TDOA information is embodied in differences of

polynomial degrees In a given column. Since differences in degrees are unchanged

by multiplication of all the elements with the same polynomial, it may be possible

to extract the desired information directly from B(z). This is easy to see for the case
eS.of no multipath. To illustrate this consider

[%'.

F'. ........
............ .........
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B W ( Z D * (z) b5,(Z) 0Fcz'D2 * 0 b8,2(z) (31a)

where * are entries of no interest to this discussion, and with

bjl( z) - go + g, Z l + + gm 2-M  (31b)

Then the first column of B(z). B P(z) B (z) will be

[.z-'I b ,(z) g0 zDi + glzD "1 + . + gmz-Dlm 1
"cZ-D2 b5,,(z) j cg0Z'D2 + cglz-D2-- + + cg,,-z -'- J (3Z)

Note that if we look at the first nonzero terms of these polynomials ( g0z-DI

cg 0 z-D2 ) and take the difference of their degrees, we get the correct TDOA estimate

(D - D l ).

In summaryt having an ARMA source model, rather than a pure AR model does

not significantly complicate the TDOA estimation problem.

IV.Z. ARMA Propagation Models

The simplest form of multipath propagation is caused by a signal being reflected

by some object which lies outside the direct line of propagation, causing an

extraneous delayed version of the signal to arrive at the sensors. This type of

multipath propagation can be represented by a MA model of the type used in earlier

sections ( B (z) ). Often, a more complicated type of propagation occurs. The signal
p

can undergo multiple reflections of the type encountered, for instance, when a

sound wave propagates in a room (e.g., the "cocktail party" problem- locating people

25
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who are speaking inside a room). The sound is reflected from one wall, bounces off

the opposite wall and again from the first wall. Similar effects occur when seismic

waves propagate in the earth or when sound propagates in the ocpan (reflected

from the water/air and water/ocean floor interfaces). This phenomena is best

modeled by an AR type model. I
In general, a realistic propagation model will combine both types of multipath

propagation and will therefore be an ARMA model, i.e.

Y(z) - D (z) A -1(z) X(z) + N(z) . (33)
p p

The structure of the propagation model depends, of course, on the particular

application being considered and on the physical properties of the propagation

medium. In its simplest form Ap (z) will have a diagonal form, meaning that the

propagation from a given source to all sensors has the same kind of propagation

effects, except for different delays which are represented in B (z). In general, more
p

complicated forms of propagation are possible in which case A (z) will be
p

non-diagonal.

Estimating the source location and spectrum requires estimating the system

transfer function B(z) A-1(z) and then "factoring out" B (z) and B (z) A ''(z) . We

have seen how this can be done for MA propagation models. The situation is more

complicated in the ARMA case, but under certain assumptions it can still be done.

To see this consider first the simpler case where the source model is purely

autoregressive, and we also assume that A(z), A (z) are diagonal,
p

H(z) W B (z) A P_(z) A,1 (z) . Bp(z) t AI(z) AP(Z) r1 • (34)



The TDOA estimates can be found directly from B(z) B (z) , as before. The
p

factoring of A(z) into A8(z) and A P(z) Is not possible in general. However, in many

cases of interest it may still be performed. Consider the situation where the time

dependence of the source spectrum and the propagation model are different. For

example, consider a nonstationary source, like speech, which stays fixed in space

so that the propagation model is time-invariant. By repeating the computation of

A(z) over several time intervals and computing its roots, A (z) will be found from

1 those roots which do not change, while A,(z) will correspond to the roots which are

varying from one time interval to another. As another example, consider a

statistically stationary source, which is moving, causing the propagation model to

- change. Here A,(z) will correspond to the fixed roots of A(z) and A P(z) to the

changing roots.

i If either A,(z) or AP(z) are non-diagonal, the nonuniqueness of the MFD

representation will cause some difficulty in getting the TDOA information from

B(z). The question of getting the proper "canonical" form of B(z), A(z) for a general

nondiagonal A(z) is not completely resolved at this time.

When both the source model and the propagation model are of the ARMA type,
p

the system transfer function is given by

H (z) . B P(z) 4 P-i(Z) BA(z) Aj'l(z) .(35)

In this case the relationship between A(z), B(z) and A (z), A (z), B (z), B (z) is not as

straightforward as before, Under certain assumptions, the source and propagation

models can still be factored. We will not, however, discuss this case here.
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IV,3, Direct Estimation of Source Location

The set of TDOA's contains all the information required to locate the sources, i.e.

source bearing and range or source coordinates. Thus, estimating the source

location can be performed in two steps: First estimate the TDOA's ( Aij ) using the

method described in the previous section. Then compute the source location from

the set of Aij's using the approach presented in [1,2). The relationship between

the source coordinates (or equivalently: its range and bearing) and the TDOA is

given by the problem geometry. For each pair of sensors in 2-D plane, a given TDOA

corresponds to a source located on a hyperbolic line of position. Different pairs of

sensors and their TDOA define different hyperbolic lines of position. The source

has to lie on the intersection of these various lines. These geometric facts can be

translated into algorithms for computing source location, as outlined in [ 1,2].

A different approach would be to try and estimate directly the source

coordinates. Since the functional relationship between the source coordinates and

the TDOA's is known, it is possible to re-formulate the problem as an estimation

problem for those coordinates. The resulting equations are, however, quite

complex and possible solutions, especially the ones that lend themselves to

distributed computing, are still under investigation.

IV.4. Moving Sources

When the sources and the sensors are fixed in space the propagation model will
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usually be time-invariant. (This is not necessarily true, since the propagation

media may be nonstationary, but for the moment we ignore this case). Thus, the

corresponding ARMA coefficients will be constant. If there is source motion, the

ARMA coefficients will be time-varying. Provided that these changes are not fast

compared to the system sampling rate, the identification algorithms will be capable

of tracking the system parameter changes and thus the source location.

Another approach to the moving source problem is to assume a priori a specific

form for the time variation of the model and thus reduce the problem again to

estimating constant coefficients. For example, the MA coefficients of the

propagation model may turn out to have a polynomial form

NO - Bi,0 + Bi,l t + Bi,2 t2  (36)

The coefficients Bi,O, Bi,1 , Bi,2 of this time polynomial can be related to the source

location at some reference time, its velocity and acceleration. Thus estimating the

time-varying ARMA coefficients will provide direct estimates of moving source

parameters. The proper form of Ai(t), Bi(t) and the resulting algorithms are

currently under investigation.

In many applications, the signals received from moving sources undergo

significant doppler shifts. These frequency shifts provide information about target

velocity and about its location with respect to the sensors. Source location can be

estimated by looking at the differences in frequencies of arrival (FDOA) of the

signals. The estimation of target location from the set of FDOA's is analogous to the

estimation from TDOA's which was described earlier.

The estimation of FDOA's fits nicely into the system identification framework
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developed in earlier sections. To see this consider a single AR source of the type

X(z) - U(z) (37)

The signals received from this source are given by

Y(z) - H(z) U() + N(z), (38a)

with

bl(z)1al(z)

bMj(z)/aW(z) (38b)

and

ai(z) = a(z-z i ) , (38c)

where zi corresponds to the doppler shift from the source to sensor i. Estimates of

the coefficients of ai(z) can be obtained by using identification techniques of the

type described earlier. The doppler shifts (i.e. FDOA's) can then be found from these

coefficients as indicated by equation (38c).

In the multisource case U(z) will be a vector and H(z) will have the form of a

matrix with rational polynomial entries

H(z) - [ b*(z) I a.j(z) j I S i < M, i <J < N. (39)

The coefficients of the denominator polynomials a.j(z) contain the FDOA estimates,

while the coefficients of numerator polynomials include the TDOA etimates. The

details required to substantiate these statements will be described elsewhere, but

the basic ideas can be -een from the single AIR source case. Note that if the doppler

shifts are negligible, the system transfer function H(z) reduces to the form which

was presented earlier; the columns of H(z) have a common denominator polynomial,

,10



i.e.

aij(z) a.(z) (40)

and therefore,

H(z) B (z) A-1 (z) A(z) - diag { aj(z) } (41)

This equation is identical to equation (18) which was derived while ignoring

doppler shifts.
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V. Conclusions

- In the previous sections we presented a linear systems framework for treating

the source location and spectral estimation problem. We believe that the proposed

approach has potential advantages over currently used techniques, particularly in

situations Involving multiple sources and multipath propagation. Application of

this approach to real data involves a myriad of practical issues which were not

addressed in this paper. These include:

- Optimal detection and TDOA estimation schemes based on the coefficients

of B P(z). Simple thresholding and Interpolation (to refine the

bearing resolution) are probably suboptimal.

- Probability of detet:tion ( Pd ) and probability of false alarm ( Pfa

curves parametrized by signal-to-noise ratios ( SNR ) for the

proposed algorithms.

Bounds for the bearing resolution achieveable by this approach.

- Validation of the proposed approach by computer simulation.

These and other practical issues will be addressed in future papers, including the

presentation of the computer simulations in progress.

The source location problem also served us as a prototype for motivating

* research into several system-theoretic areas, including:

. Development of efficient, numerically stablc algorithms for going

from Right-MFD to Left-MFD and vice -rsa.

".Algorithms for direct estimation of Left-MFD's.

. .. . . . . .
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- Uniqueness and identifiability of multi-input multi-output MFD's.

- Identification of ARMA models with time varying parameters.

- Identification of ARMA models with special structure (e.g. the low

signal to noise case in section III).

- Identification of systems with certain types of nonlinearities

(e.g. those appearing in the direct estimation of the source location,

see section IV.3).

These topics are currently under investigation and some partial results were

obtained. The details will be presented elsewhere.

The approach outlined in this paper makes it possible to apply a whole range c

techniques developed for system identification to the source location problem.

Improved performance, the possibility of handling multipath and simultaneous

estimation of TDOA and source spectrum are expected features of this approach. In

addition, we have seen that the system identification framework leads to a number

of interesting system theoretic questions.

3
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Appendix As

Example of Recursive Identification Algorithms

Perhaps the most basic and most commonly used identification scheme is the

least squares (LS) method. This method is archetypical for several others, and in

particular for those to be considered here. For a thorough treatment of this subject

see, e.g. [9), [10], (14], (15].

Problem Statement

Given measured input output data we are interested in fitting an ARMA model to

this data, as discussed in section II. Recall that the ARMA model parameters are

given by the matrices Ak and Bk , hence they are to be determined from recorded

input-output data (y(), u(t), I - | ... N). The A parameters represent the

autoregressive part, whereas the B parameters are the moving-average part.

The LS- (Least-Squares) Method amounts to choosing the parameters Ak, Bk SO

that the "equation error" e(t) (see e.g. equation 7 in section II) is minimal
N

min k, Ii e(t)II .
I-I

?min./,lk Iy(t) + Aly(t-l) + . • + Ary(t-r) - B1u(t-i) - Br u (t -r) ff2
t-I

We introduce the following notation, denote transpose by T and define s - p + m

and q - rs, then the input output data is given by the vector of the measurements

y[t- 1, t-rT - y(t- 1)T, u(i- )T, y(t-r)T, u(tr)T ]

(a q by I vector).

And the model parameter vector is given by

A[i, rT 1 AT- , B1T, -Ar, rT ]

A. 1
i ;-; - -- .'. .- . , ..-' - . *: - .. " ' .,. .- .-. . " . .• o . • - . , ... - ... . . .. . .



(a p byq -matrix).

Then the output equations can be written in vector form as

y(t) . A[l,r]T ytt-1,t-r] + e(t)

and we wish to minimize the equation error by minimizing
N

minA Z It y(t) - A'I, rT yt- i, t-r] 112

Since (2) is a quadratic function in A, in order to find the unknown parameters

it is easy to give the minimizing A at time N, denoted by AN, explicitly via the

so-called normal equations

RN -I, -ANT ]T RO, 01 . . . 1 i

or RN_ AN - RN.

If the inverse of RN or RN_ exists, we can obtain an equation for the estimates of

the parameter vector that minimizes the equation error (2)

AN [ RN -1 RN,

where with q rp + m) and q i s - (r + 1Xp + m)
N

RN - Yi Jt, t-r] Jt, trT (q+sbyq+s - matrix)
gui

N N

R - Ytt-1, t-r] ylt_ 1, tr]T (q by q -matrix)

are the joint sample covariances of the measured input output data, and
N

RN  = Yt-1, f-r] y(f)T ( q by p - matrix)

is the sample cross-covariance of the "current" output y(t) and the past inputs and

outputs.
N

RON - Z e(t) e(t)T (q by p-matrix)

RON is the sample prediction error covariance of the output y(t).

As is very well known, e.g. [9,10], this solution can be written recursively in

time t, i.e. as a function of the in real-time measured input and output data y(t) and

0

U(t).

,. . . ,~ ~ . -A + .T.- • .. • .



The parameter estimates are updated by increment that is proportional to e(t+ I), the

error in predicting the next output y(t+ 1).

et+iT - 1 T - y t, t+I-r T At

= y[t+l,t+l-r]T [ I, -A IT iT

The gain ko is obtained similarly via the prediction error covariance P, of the

parameters.

't - P,,IT ,Y[t,t+l-r - kt l  -1tll

. 1, l  - P8 y[t,t+I-r]

prediction error covariance of the data

I = + Yt,t+l-r)T P, Y[t,t+I-r]

I + ytt,t+I-r]T k8, 1

PII = P, - k 1  r0* 1
1  k,~lT

where the recursions for P are recursions for the inverse of R , the sample

covariance of the input output data, since
Pt . [ R, ]-I

P Ri-

The above set of equations can be regarded as a state estimator or Kalman filter,

where the state is a vector of the constant parameters in A that are to be identified

or estimated. The output equation of the model is given by equation 7 in section II,

and the state equation is trivial since the state is a constant vector. For vector

measurements (p > I) the equations above differ actually from the usual state

estimator equations since then the "state" is a p by q matrix instead of a pq by 1

vector, which has certain implications on the dimensions of P , (here a q by q and

* not a pq by pq matrix); however it is not very hard to recast this convenient form

into the commonly used state-space format, hence using all the available

techniques for analysing and implementing such algorithms.

A.3
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Appendix B:

Pole-Zero or Autoregressive Moving-Average(ARMA) Forms

In this appendix we discuss fast algorithms for pole-zero or autoregressive

moving-average (ARMA) modeling. These forms have many advantages over the

forms presented in Appendix A, see example [13], (16], [17]. They appear

especially well suited for real-time applications using fast pipeline type processors.

B. 1 Joint Innovations Representation of the ARMA Process

I

Given a pole-zero (ARMA) model of the type discussed in section II and in

Appendix A its equations can be rewritten as

y, + Ayt-1 +" + ANYi-N- Bu--"•- BNut-N " BOu 1,

and in matrix notation, we have

aN y, - <NT u BOu,

with

aNT [M I' Al, A2, ' AN ] ,

b* N T - Om , B1 , B2, , BN ],
yT = ( T, , yr,T) ]

U = , , U T
L 8 a-n

leading to the following augmented equation

* [a T b; V1 [i].L:u'

0 ~T U t U t  ,

where 6o is the first m by m block unit vector.

This embedded model can be interpreted as a -channel AR model of the joint

process { y,, u, }. Here, the right hand side of the augmented equation is equal to

6

-- . . . . . . . . . . 1R .1
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the joint innovations or prediction errors of { yt, us ), since

9 Y1. - tit-I ou

( x [:I *[I _u II-Ij u 3

Indeed if we apply a simple interleaving permutation of (i, 3, 5, ...

2N+I, 2, 4, 6 .... 2N+2) to the augmented equation, we have a 2-channel

one-step predictor of the autoregressive form

ANtza .-

i where

ztN  T y T t, . ... _

z/t - / u8 ..... .YNT, UIN ]

If the covariance of the input/output data is given

the problem of finding the linear least-squares predictor

is reduced to solving a normal equation of the following form

RYUNAN ER(N, , 0, .] T

where the joint covariance is given by ( E is the expection operator)
iRYU 

0 R yu I  R YUN

I R yIT RYu o

Ry'u N - E Z9 Z I T=

R yUNT . . . YuO

R * it E ]I tT Ut- T

and the prediction error or innovation covariance is defined as

TREN - E i t (t

B.



RY(O) RyuO R 1 f(n) R YU(n)

R (0), RY10 0

Ryuo)T ,m o om J

Since RYA N has a special structure, i.e. a block Toeplitz matrix with blocks of

size 2m by 2m, the solution to this normal equation can be obtained via fast

algorithms, see e.g. C 13]. These algorithms again are adapted to efficient computer

implementations.

B.2 Least-Squares Recursions for ARMA Models

The variables of interest are in this case the joint forward and backward

prediction errors of order n at time T is defined as

[',,YT 1 T YTITl,...,T-n

r U,T "U - UTIT",T A,,, Z :-n]

The covariance matrix for the joint process is thus similar to that given in

Section B. I and taking advantage of its special structure, one can obtain recursions

for the 2-channel AR case, i.e.

At,IT - DTn],T R-rn,T-I B,T-

Bn-1,T = Bn,T.1 - DFI,T R' . i,T An, T



In the two-channel case, D, l,T, the partial correlation matrices exhibit

additional structures, due to the embedding of the white input process of the ARMA

model into an AR model. Since all future inputs are assumed to be uncorrelated

with the present and past outputs, half the elements Dnl,T matrix are

approximated by zeros. Indeed the partial correlation matrices are equivalent to the

ARMA model parameter estimates, see e.g. [ 19], and they are now given by
T

AY.l+,T 0 m F E Yl.-._iYe., t)T Om

An+I,T'

T
L'AU [ +I1,T Om J LZUl,l(Yn, 7t)T Om.

i,=n+l

The time-updates for these partial correlations are obtained in a similar manner

as in the single channel case
TT

it,T T yn,T ,lT

it+I,T~l = n+I,T + I - 7'n-1,T

A , A U + r n,T T Yn,T .T

! nI,T*I n*l,T I [  yt-,

In order to obtain recursions for the ARMA model parameters, inversions of the
joint 2m by 2m prediction error covariances, RE and Rr are needed. These

n,T ad n,Tarned.The

inversions are simplified by first decomposing them into upper-diagonal-lower

form and then taking inverses. Examples of the different forms of the fast ARMA

model parameter estimation algorithms can be found in [ 11,12,13,16,17,19]. The

numerical properties of these algorithms are still under investigation; however,

certain ladder canonical forms that are also described in these references, appear to

be most desirable properties for implementations.

B.4
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Estimating Source Location from Time Difference of Arrival:

A Linear Equation Approach

J.M. Delosme*, M. Morf* and B. Friedlander** ,

Abstract

A new framework is presented for the problem of estimating source location

from a set of time difference of arrival (TDOA) measurements. The proposed

approach is based on the fact that three sensors with their set of TDOA's determine a

straight line-of-position for the source. It is shown that the source location can be

found as the solution to a set of linear equations, with the number of equations

being equal to the number of sensors. The proposed approach has several desirable

features Including: the availability of efficient recursive algorithns for solving

the resulting linear equations, the possibility of distributed implementation of

these algorithms, and the applicability of optimal estimation techniques to this

type of equations. Some extensions of this problem formulation to the

three-dimensional case, to geopositioning on the surface of a sphere and to source

velocity estimation, are also discussed.

' Information Systems Laboratory, Stanford University, Stanford, CA 94305.

: Systems Control Inc., Palo Alto, CA 94304.

This work was supported by the Defense Advanced Research Projects Agency
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I. Introduction

A common way of finding the location of a point is by measuring the range

differences to several other points whose location is known. In various navigation

system (e.g. Loran, Decca, Omega) the measurement consists of observing

differences in the time-of-arrival of signals from sources at the known points to a

receiver located at the unknown point. The time difference corresponds to a range

difference if a constant velocity of propagation is assumed. In the passive sonar

case signals travel from a source whose location is to be estimated to sensors with

known positions.

The standard approach to estimating source location is based on finding

hyperbolic lines of position ( LOP ). The measurement of a certain TDOA at two

sensor locations, determines a hyperbola. Each point on the hyperbola lias the same

range difference to the two sensors -- see Figure 1. If more than two sensors

provide TDOA measurements, several LOP's are generated, one for each pair of

sensors. Since the LOP's will, in general, be different and since the source must lie

on all of them, their intersection will provide an estimate of the source location.

2
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Figure I. Hyperbolic Lines of Position

The hyperbolic LOP approach has several serious drawbacks the analytic

computation of the intersection location is very cumbersome; these solutions do not

- iappear to be easily extended to other situations such as calculating source velocity

* " from TDOA-s and their rates of change or computing source location from Doppler

measurements. Furthermore, the complexity of the solutions makes error analysis

very difficult.

SA
A. alternative approach which circumvents many of these difficulties was

' .proposed by Schmidt I 1]. His approach is based on the idea that three sensors with

* their set of TDOA-s determine a straight line of position. In fact, that line is the

major axis of a general conic which passes through the three sensors -- see Figure

2.

. -,0 - • . . . • : . . .. . . , _ , __i - ' . . , _ - : _ .. : : .. : . , , - , . ,, : : 3 , ,Z :, : _:
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3

equations, N being the number of sensors. This approach, while alleviating some

of the difficulties of the hyperbolic LOP approach, still has several drawbacks. The

main difficulty lies in the use of redundant information: the formulation leads to a

set of (') equations, while in a sense there are only N independent pieces of
3

information corresponding to the range from each sensor to the source. This

redundancy creates some inconsistencies in the case of noisy measurements. The

straight LOP approach and the difficulties associated with it are described in

section 1I.

"' where () is defined as 3 .

- 4
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In this paper we propose a different problem formulation which is based on the

straight LOP approach. The source location is found by solving a set of N linear

equations which contain the sensor locations and the source-sensor ranges. This

set of equations contains all the relevant sensor data without redundancy. We also

show how the source-sensor vrmge can be estimated In a consistent optimal way (in

the least-squares sense) from the TDOA or TOA measurements. Our problem

formulation and the resulting solution algorithms are described in section III.

The proposed formulation of the source location problem has a number of

attractive features, which are mostly related to the linearity of these equations:
S

- - Efficient algorithms are available to solve this type of equations

- Algorithms which are recursive in the number of sensors have been derived.

S-Thus, initial estimates can be obtained from a small set of sensors, and

these estimates can be updated as information from more sensors becomes

available.

- The linearity of the equations makes it possible to implement the

computations in a distributed fashion. This Is particu!arly important

In the context of distributed sensor nets [2).

- The new formulation is well suited to the development of optimal

estimation algorithms.

5



.. The proposed approach lends itself naturally to extensions to several

classes of problems, including: source location in three dimensions,

geopositionlng on the surface of a sphere and estimating target

velocity from range rate measurements.

These extensions are presented in section IV.

We believe that the approach proposed in this paper provides a proper

framework for handling the source location problem. A detailed evaluation of the

approach and comparison to currently used techniques is now under way and will

be reported later.* We are also in the process of deriving optimal estimation

algorithms for the source location problem, as outlined in section III

* A similar approach has been developed and tested on real data and

found to perform satisfactorily (18).



II. The Source Location Problem

The solution of the "position fixing" problem using the hyperbolic LOP has been

treated quite extensively in the context of navigation systems like Loran [3],

Omega [4], and the Global Positioning Systems (GPS) [5]. The complexity of the

equations resulting from this approach led to a solution based on various

approximation techniques involving linearization and Taylor series expansion [6] -

[8]. Since the hyperbolic LOP approach is well documented [9] - [I I ], we will not

describe it here in detail. Instead, we will provide in this section a description and

an analysis of the alternative straight LOP approach proposed by Schmidt.

The Straight Line-of-Position Approach

For ease of exposition, attention will be restricted to two-dimensional position

location in a plane. Extension of the ideas to more complicated situations will be

- presented in section IV.

Consider a single source located at a point (x0 , yo ) in the plane and N sensors

located at points (xi , y), i .1 .... N, as depicted in Fig. 3. We shall denote by r i

. the distance from the i-th sensor to the source, and by Aji the range difference for

sensors i andj. Then,

'A ji =r i -i

and,

r ( - x, + (Yo - Y 2

It is shown in [I] that for any group of three sensors {Si , Sj, Ski, a straight line

.. * . . , . * .* - * * ... , ,



of position Is defined by the relationship,

0Fix (x y)
0 0

r 3

SI ~ 12 /
(xi 1 y1

1

/ ~2 (x2 , Y2

A13 / 3

S3 (x, y3 )

0

Figure 3: Problem Geomfetry

(XiA.k+X k +x i Y Aik + YI Aki + AYkAij)Y

Ai zjjk Aki + a k+ a, 4-+a j. ()

where

-j Xi2 + Yi2

Schmidt I1) proposes to use the set of linear equations obtained by writing down

equation (1) for all (NV) possible sensor triads. His solution then consists of solving
3

8
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this set of equations to find the common intersection point (x, y) which in the

noiseless case will be exactly the source location (xO, yO). Some alternative solution

methods are also suggested, based on the observation that the source lies on one of

*-5 the foci of an ellipse passing through the three sensors. Here, however, we will

concentrate on the set of (N) linear equations represented by (1). Our aim is to

explain some of the difficulties associated with Scnmidt's proposed solution.

The Noise Free Case

We first note that when the range differences are obtained without errors,

Schmidt's set of (N) equations is really equivalent to a related set of only N3
equations. To see this note that

eaij Aak Aki "(r j- ri )(rk - rj)(r i - rk)

-rj2 k rj2 Aki - rk a ii (2)

Therefore, equation (1) may be rewritten as:

[Xi Aik + Xi Aki + xk AiIJX + [YiAjk + Yi +aki + A 1ij I =

![(ai 2 - rj 2 )ai& (a 2  rj 2 ) A k + (ak 2 
- ij (3)

*. ( Let us introduce the linear operator 0 whose operation on any station dependent

quantity u and any triad {S, S1. SOj is defined by,

|. . I ri  u|

0 ijk (U) - de' I

0 rh uk j(4)

Using this operator, the original set of equations satisfied by the source coordinates

(xo0 Yo) may be rewritten more compactly as:

Oijk (x xo O ijk [y YO) Oijk [(a
2 - r2)/2 , (5)

for all triads ij A.

............................................................................



By linearity of the operator this equation is equivalent to:

ij k [ xx 0 +yyO-(a 2 - r 2)/2 ] 0 for all triads (6)

Since the last equation holds for every triad, x x0 + y Yo - (a 2 - r2)/2 belongs to the

kernel of 0, i.e. there exist two constants b and c such that

XiX0 + Y YO 2 C-ri2)12 - c + br i  I-I,N (7)

Conversely the set of N linear equations with four unknowns xO, Yo' b, C

XiX 0 + YiYO - rib - c - (ai2 -ri 2)/2 i - 1,N (8)

gives, by application of the operator 0, the original set of (N) equations. Therefore3
the two sets of equations (1) and (8) are equivalent.

Redundancy for Noisy Measurements

In reality the range difference measurements are corrupted by noise. To see

how this modifies our previous conclusion, more insight Into the nature of the

noise is needed. In particular, we have to distinguish between two ways in which

the TDOA estimates may be obtained.

(1) Differencing Epoch or Travel Times

If the source emits narrow, well defined pulses of energy, the sensor will be

able to determine the exact time those pulses were received. Since the sensors do

not know the time at which the pulse was transmitted, they are unable to compute

the travel time directly. However, by differencing the recorded arrival times of

two sensors, the difference in travel times (TDOA) is found, since the unknown

"starting time" cancels out.

, to

'I
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(ii) Cross Correlation

When the sensor emits a noise-like continuous signal which has no easily

" .* recognized features, the TDOA is usually estimated by cross correlating the signals

Sof the two sensors. See, e.g. [1 1] for correlation techniques and [13] for an ARMA

modeling approach.

For both methods the error in the TDOA estimate, or equivalently, in th range

difference A, may be considered as additive and (approximately) uncorrelated with

A. While in the first case this noise is the sum of two independent components,

*. one due to each sensor, in the second case such a decomposition does not generally

exist.

Redundancy for Case (I)

More precisely for type (I) techniques the available measurements have the form

ri + v i where ri = ri + r, and r being an unknown quantity identical for all the

sensors Si, wheras Pi is the additive noise. Therefore the measured range

differences are obtained as:

.(rhV) - (r1 r ) + (9)

It Is easy to check that equations (2) through (8) still hold if ri is replaced by the

measurement ri + iv. Consequently, when Ai is defined by (9), the set of N

equations

XiX 0 *. yoyO - i - c - -( + , iI,N (10)

9- is equivalent to the original set of equations.



Hence, if the TDOA's are obtained by differencing of travel times, the original set

of equations contains highly redundant information and can be replaced by a much

smaller set of equations (10).

Inconsistency or Redundancy for Case (ii)

For type (ii) techniques the range differences have the form:

Ai - ri -rj I + Vji 1I

i where the additive noise cannot in general by decomposed as Pi - VP. Some

information about the noise on the A's appearing in equation ( is readily

available by summing up around the loop ijk : Aji + Ajk + Aki - , instead of

zero in absence of noise. This information should be used to improve the

coefficients of (1). One natural way to do this, called TDOA averaging in [ 1], is to

correct the A's symmetrically:

13
Ljk - 3A- -

Iki - Ak i- 
(

so that

"Lij + 3Ajk + aki ' 0

I and use those "corrected" range differences in the computation of the coefficients

of the straight LOP (1) . Application of the same procedure to the triad (Se, Sj, St)

yields:

I

12
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A *ij Alj 3

"(13)Ai " Ai T t3

where "Aij + Aj + Ali Thus two expressions for which are in general

inconsistent, have been obtained.

I
The fact that the TDOA averaging procedure yields different estimates of the

same range difference is linked to its inherent suboptimality; it is possible to find a

better estimator of the range differences and, simultaneously, to get rid of any

inconsistency by using all the information available about the noise on the A's to

find the a's.

Since the exact values of the range differences have the property A = 0 , it is

natural to require that - 0 for any closed path or loop (involving three

sensors or more). This condition is equivalent to stating the existence of a set of

variables {ri, i - 1 N) such that -ji r - rj. Furthermore the inconsistencies will

automatically disappear in a procedure which evaluates the a's as Aj- " ri - r.

where the ( ) measurements of A are used to estimate the r's. The rule for

obtaining the set {ri, i - I, N } which minimizes the variance of the error between

the estimated A's and the true range differences will be called here "generalized

TDOA averaging" and will be described in the next section.

The coefficients of the original set of equations should be computed in terms of

the consistent set of a's which is the best estimate of the set of true range

11i



differences. Since ri - the original (N) equations are equivalent to the N
ji 3

equations:

x x0 + - rjb - c - (a -r)/2 i .1, N (14)

Therefore, the original set of equations contains redundant information when the

range differences are obtained by type (ii) techniques.

These two examples clearly display the importance of using the proper set of

equations when only imprecise measurements are available. In the next section we

will look more closely at our proposed framework

14



1II. The Linear Equation Approach

As a byproduct of the analysis of the original set of (N) linear equations in xO, YO,3
the source coordinates, a set of N linear equations satisfied by xO, Yo and two other

variables b and c was obtained:

XiX0 + YiYo - rib - c - (a- 2r)/2 , i-I,N (15)

where the ri's are estimates of the ranges ri (obtained modulo an additive term r

since the original data are range differences.) This set of equations can be derived

more directly using the fact that the source is located at the intersection of the N

circles (Si , ri):

or

- 2x x 0 -
2 Yi Yo + ( x0 +y 0

2 ) + ( xil +yil) r2 + 2 r ri , -.2

Thus,

Xi X0 + yi yo + ri r + (.r. xol + yo 2 ) )/ 2

((+x i i)- i. I, N (16)

which can be written in matrix form as

X1 Y1 r, (a,' -r,)/

V.

X,V YN a I (a - N )/ 2 (17a)

where

V T " x0 , y r , r a 2 )/2 ) , (17b)



and T denotes the transpose of a vector or matrix.

This approach can easily be extended to the location problems in the 3-D

Euclidean space and on the sphere (see section IV). Moreover this derivation also

provides the interpretation of the parameters b and c:

b - - r

C = ( 2 _-(xO2 +yo2 ))W2

Although r is unknown, its expression in terms of the ranges ri can be fixed if a

constraint on the sum of the ri's is imposed. For example,

N

ri -, 0 (18)
i-1

implies that
N

r . r , (19)
i= i

i.e. r is the average range from the source to the sensors when the set { ri , i - I, N

Is "normalized" so that (18) holds.

The distinction has been made earlier between two types of techniques for

obtaining range difference measurements. In the first case the range estimates r i

are measured and can, therefore, be used in equation (17). In the second case the

range differences Aij are measured and ri is lot directly available. In the latter

case however a generalized TDOA averaging procedure can be used to estimate the

rs from the differences Aji so that the zet frii = r- r, i - i, N} is actually

accessible in both cases. This method is lescribed next.

16



Generalized TDOA Averaging

Given noisy measurements Aft. Cri - ri] + vii, many procedures may be devised

for estimating the set {fr, i - 1, N) described above. The method proposed here is

basically a least-squares solution, hence some preprocessing has to be done on the

A's to descard too noisy measurements ("outliers") or separate echoes coming from

different sources. This preprocessing may be performed considering the A's alone

by computing the sums of measured A's around several loops defined by the sensors

and using those quantities in a hypothesis testing scheme. Alternatively, more

sophisticated TDOA estimation techniques can be used which provide an "optimal"

set of A j. See, for example, (12) and [13].

Writing the relation ( 1) for all the pairs of stations yields

A 21  I -I 0 . . . 0 r V21

A 3 1  I 0-1 . . . 0 r2 V3l

. .. . . . r3

ANI I 0 0 . -I . vNI

A 32  0 1 =1 0 rNJ v32

+

A N2  i 0 -N 1 I2

ANN 0 0 . . . 1, °NNI

A P rV

L . _ . , . . . ... . . .. . . . .. . . .. . .. . . . .

• " ' , ." . ' " " • ." ," "" ) " "." " " " " " ' ''"" " " ". - " " , =". - -" " " "" ," " "" "' ". " ," ." .. ". " "..



or Pr + v . (20)

Letting

we can write

Note that if r satisfies (20), then so does r. However r will be uniquely

determined given the information

A - r P + v (2-1a)

if the constraint (18) is introduced, i.e.

IT ' 0 (Zb)

If the a priori information on the mean of the noise is subtracted from the

measured A's, V can be considered as zero-mean with covariance matrix R.

Making the reasonable assumption that the error V is independent of r, the linear

least-squares estimate of r can be found quite easily. The procedure for finding the

estimate consists of "whitening" the noise vector V and applying a least-squares

algorithm under the constraint represented by equation (18). The details of a

sample estimation algorithm are presented in Appendix A.

If we further assume that the errors associated with different TDOA's are

independent, in which case the error covariance R = I, the least-squares solution of

(2 1) has a particularly simple form. The solution is given by

pT p r pTA

that is

18



pli

(NI -IlIT )

- AiN (22)
piN

Using the constraint (18), the linear least-squares estimate of r is, therefore, given

by

N,,-i a 7V Z 6 - I, N ,(23)
,':-"j-l

which corresponds to simply averaging all of the Ajj measurements associated

with each station Si. The estimates of the range differences are i - with r1

given by (23); their expressions reduce to (12) when N - 3. Thus, equation (23)

indeed represents a generalization of the TDOA averaging method.

Solution Methods

Assuming now that the ri's have been computed, the set of equations (17) may be

used to obtain an estimate of the source location. The geometric configuration of

the stations and the source may be such that the accurate determination of the

source locations is Impossible whatever estimation technique is used. Equation

(17) and its extensions to more complicated situations are particularly well suited

for displaying such cases (see Appendix B).

When the source is locatable from the TDOA's and the measurement noise is

%I
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negligible, application of a least-squares algorithm to the equation (17) gives the

vector solution V. Furthermore, if a sequence of measurements are available

(rather than a single set of { ri 1), it is possible to use estimation techniques which

take into account all measurements to provide the best possible estimate. To see

this, we rewrite equation (17) in the form

"Y, " U V,

where Y is the vector on the right-hand side of (17a) and H is the matrix on the

left. The subscript t indicates that these quantities correspond to measurements

taken at time t. Assume now that a sequence of measurements of { ri ) is available

for t - 0, I..... In estimation terminology we have a sequence of "measurement

vectors" Yj and "measurement matrices" H1 , and we want to estimate the unknown

"parameter vector" V.

Problems of this type have been treated extensively in estimation literature,

both for the case where V, is a constant vector (fixed sources) and for the case

where V, is time varying (moving sources). A number of efficient recursive

algorithms for estimating V, can be found in [ 14] and [15]. These algorithms can

be recursive in time, i.e. when a new data set ( r }1 or equivalently fy,, H}

becomes available, the estimate of the source location V, can be updated to give an

optimal estimate based on all past and present measurements! The algorithms can

also be recursive in the number of stations, i.e. given a set of measurements fromm

* ,stations, they provide an estimate of the source location based on the available data.

When a set of measurements from the m + I station becomes available, the estimate

* can be updated without recomputing (17). The details of these algorithms will be

presented elsewhere.

.J.
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When the measurements are noisy,

V, t , v, + is

where I, represents a discrepancy between the two sides of equation (17). If Et is

assumed to be a sequence of independent random vectors, optimal estimation

techniques can still be applied. The situation here is somewhat more complex than

the standard linear estimation problem because of the inter-relations between the

various components of the vector V. An optimal algorithm for solving equation

(17) under these constraints is currently under development and will be presented

in a later paper. The algorithm is based on modifications of some nonlinear

estimation algorithms of the type derived by Marcus 16] and (17].

.6
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IV. Some Extensions

The formulation of the source location problem given in the previous section can

be naturally extended in several ways. Here wp discuss extensions to three

dimensions, to geopositioning on the surface of a sphere and to estimation of source
velocity.

3-D Euclidean Space

By writing that the same location is the intersection of the N (hyper-)circies (Si,

ri) a set of N equations satisfied by the source coordinates and the average range can

be obtained for space more complicated than the plan.

% A direct extension of the equations obtained in the 2-D case gives,

(x, _ xO) 2+ (,_y)2+ (z, _ zo) -(r.
2  2 ,

or

2 xj x - 2yyo- 2 j z0 + ( x0
2 + Y0

2 +z0
2 ) + (X,2 + y,2 +Z, 2 )

P+ 2rr;1 4 ri

Define a* by

aj G XuXI+,ij+ Z? i2

Then the equation above can be written as

X1 ~Z1  ~ (42 -i2)12

rN~ N (a r' -N
2)/2 ,(24)

zz
'- ~- - - - - - -%



where

T . (, xo, oz, , ( r ao . )/2

All the comments regarding the solution of (17) are directly applicable here.

Surface of the Sphere

A very similar formulation holds for sources and sensors located on the surface

of a sphere. In this case ( xi, yi, zi ) are direction cosines ( xi2 + Yi2 + zi2 - I ) and ri

measures a distance on the sphere whose radius is taken as the unit of length,

hence ri Is an angle. In this case it is easy to see that the following equations hold,

xO x+ yo + zozi - cosr i - cosrcosri - sinrsin , 1- I,N (25a)

which can be rewritten in matrix form as,

XI 1  2 1  X0  Cosr -i4 , o

xN YN zN COS rN N 2b

Velocity Determination

The above approach may be used to determine the components of the velocity

vector of a moving source when, in addition to the TDOA's, derivatives of the range

differences are available (e.g. from FDOA's, frequency differences of arrival).

Then, applying to the A ji's the same generalized averaging procedure as for the

range differences, the set of derivatives {r- ri - r, I - I, N may be estimated. It

23
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may also happen that the vi are directly available.

Differentiation of the equations of the circles (Si , ri) yields, in the 2-D Euclidean

case, assuming the stations are fixed:

2x 0 (xl-x 0 ) + 2 yo(y-y 0 ) 2(r+r)(r+r i ) , r.I,N

which can be written. as

X1 X0 yj -yo -(r + r) XO(r+r)r

Y01

xN - O YN Y- (r+r (r + rN) rN (26)

Hence, having solved (17) for x0, YO' r, (26) can be solved for x0 YO , r

Moreover, if an initial estimate of the source location is available, it is theoretically

possible, by integration of xO and Yo, to obtain the location and velocity components

of the source from rate of range difference measurements only. We are currently

investigating the proper problem formulation for determining source location from

FDOA measurements only.
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V. Conclusions

The source location problem has many aspects, only a few of which have been

discussed in the previous sections. Here we shall briefly describe two other facets

of this problem which we are investigating:

- Distributed algorithms for source location. In some applications (e.g. [2]) it is

important to perform the source location calculations in a distributed fashion.

Each sensor has An associated processor which can perform some of the

computations, which are then transmitted to a central processor where the partial

results are combined to provide the global optimal estimate. A distributed

implementation of the computations minimizes the communication requirements

between sensors and leads to flexible and reliable system designs. The linearity of

equation (17) makes such distributed implementation much easier than in the case

of having a set of nonlinear equations. A more detailed explanation of the

distributed processing aspects of our aeiproach can be found in [ 19].

- Optimal location estimation. The process of finding the source location
consists basically of two steps: first, estimating a set of TDOA's (Aij) or travel

times (ri) from sensor measurements, using the TDOA averaging method or a more

sophisticated estimation scheme. Second, use this set of estimates to compute the

source location via equation (17) or some other approach. A natural question is

whether this two-step approach is optimal. In general we cannot expect the

optimal estimator to have this structure. The complexity of the nonlinear

equations found in the hyperbolic LOP approach prevented an adequate treatment

of this important issue. The much simpler structure of our approach makes the

"-" -". .-'" -' : " "". ' '".. ". " .' .. -. ." '- " --. " -. """ ' - .. .-. ".' -- ' . . .... .-..- ''-'. L -- '-- L. "- l-.---- .i.-" . .".- ......- " .". - ". ." - "."



problem of finding an optimal estimator for the source coordinator more tractable.

This problem is currently under investigation, using a combination of the

framework described in this paper and a new approach to the TDOA estimation

problem described in [ 13].

We are still in the process of evaluating the performance of the proposed

approach and comparing it to alternative techniques. However, we believe that the

framework presented here gives a particularly convenient way of analyzing and

solving the source location problem, and all the indications are that its performance

will be at least as good as of currently used techniques in the low noise case. In the

case of very noisy measurements (low signal-to-noise ratios) significant

improvements are expected since optimal estimation algorithms can be applied,

whereas only ad-hoc and sometimes inconsistent approaches have been used in the

past.
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Appendix A: Computation of the Averaged Range Differences

Equations

Given a set of range differences

iAji a ri - ri+ ji i , 1+1,NA.. . iI, N , -~,N

or, using matrix notation,

A .Pr + v

where V is zero-mean with covariance R. The averaged range differences are

obtained as .- r, - r, , where r is the least-squares solution of Prm A which

satisfies the constraint I T jr = 0. The description of an algorithm for finding Jr is

the object of this Appendix. For a more detailed explanation of least-squares

techniques for solving linear equations see [ 15].

Algorithm

First the noise V is whitened:

R- 1 / 2 A . R-l/2 -Pi + w , (Al)

where W.- R-I/2 V is white. Then introduction of the constraint on " yields the

system

R- 1 / 2 p R- 1 /2 A , (AZ)

where the first equation must be strictly satisfied and the other ones only in the

least-squares sense.

This system is equivalent to

A s b , (A3)
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V,.

where

A F 1 0(0 + (N(N-l)M/2) x N

R- 1/2 p HJ

SH r NxlI

R-1/2 aI + (N(N-I)M/2) x I

and H is teHouseholder reflection defined by the vector I

H - 'NI U UT,
N-Ul

where

UT I + IN 1 /2 . N-112 , . ,N
1 2  I xN

The N - I last columns of A def ine a Householder transformation Qa product of

several Householder reflections, such that

-NI 1 2:I . 0

QA U

0

where U is (N-I1) x (N-I1) and upper triangular, and

Q b .(0, p1 T, p 2T 1 T

*with P, (N-I1) x I and P2 ((N- IXN-2))/2 x I .The least-squares solution of (A3)

is then readily obtained as.

1 0 (a constrainit),

and the other components of S are found by back-substitution from
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where,

' .. T , ( $ 2 '  , N  ]  ( A 4 )

The components of the least-squares solution r- H S are:

* -

and

^0

, s-r ( I+N 1 I ) -  , N2-2,N (AS)

with
N

rN 1 12 Z J
1-2

The corresponding minimum-squared error is given by:

m.s.e. - p2T p 2 (A)

Computational Complexity

The quantities Q, R -1/2 and, U may be precomputed so that, when no

measurement is rejected, the computations reduce to:

I) multiply Q R1 /2 and A to obtain p I ((N(N- 1)2)/2 multiplications)

ii) solve (A4) ((N(N-1))/2) multiplications and (N-1) divisions)

iII) get the ri's from (A5)

A iv) optional:

compute P 2  ((N(N- 1 )2(N-Z))/4 multiplications)

apply (A) to evaluate the m.s.e. ( ((N-I)(N-1))/2 multiplications).

In summary, (N 2(N- 1))/a multiplications and (N-i) divisions are needed for r,

d~



plus apprcximately N4 /4 multiplications for the m.s.e. (If R , I, then

P 2
T p' 2 _ AT A _ p 1 T P1  and the m.s.e. is evaluated in ((N+2)(N-1))/2

multiplications)

When some measurements are rejected, more computations are involved because

the precomputed matrices cannot be used with only simple transformations. For

example, the inverse square-root of the reduced covariance matrix cannot, in

general, be directly obtained from the precomputed -1/2 by simply crossing out

some rows and columns.

i-
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Appendix B: Conditioning of the Source Location Problem (Locatability)

According to the type of measurement used to estimate position (e.g. range

measurement or bearing angle measurement), there exist some particular

configurations of the source and the stations for which the estimated source

location is very sensitive to measurement errors. This phenomenon, known as

"geometric dilution of precision" [8] - [10], also appears when range differences

are measured; the equations derived in sections III and IV prove particularly

helpful to determine the situations for which it occurs for source location in the

2-D and 3-D Euclidian spaces and on the surface of the sphere.

The set of equations (17) will have an infinite number of solutions if the rank

of the matrix

Xl ,l 1

XN YN rN I

is less than 4. This is equivalent to saying that the rank of the matrix

y ,l rl I

XN YN rN I

is less than 4, since - ri + r . This means that there exists (a, b, c, d) , 0 such

that for every receiver the triple (x, y, r) satisfies

43

rax+ by+cr+ d - 0 . (B1)
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Consider now several special cases:

i) If C- 0, all the receivers are on the same line a x + by - -d.

Assume now that C i 0 , Letting

D-d+axO +b y O

(B 1) becomes

a(x xo)+b(y-yO)+cr+D - 0

and, dividing by r, we get

D
a cos O + b sin + c + " 0

11) If D 0 we obtain

r -

1" c+acosO +bsinO

i.e.

..-. r- (B e?.)
:.2. I - e Cos(O- )

where

-- e+ (pa--)1/2
a

os(a2 +b2 )t12

si b
(a 2 +b 2 )1/ 2

Thus, all stations are on a general conic with the source as one focus, as stated in

[1].

III) If D - 0 all the stations are on the part defined by the set of coordinates

((x,y): sign [a(x- xo ). b(y-y o ) ] " -sign c)

of a general conic whose center Is the source. (The conic may degenerate Into two

::...... , . . ... , .p . . ..
r%***s.*.*~~~~~~. %'.Vw~* - ~ ~ ~ 5



lines intersecting at the source location).

3-D Euclidean Space

Clearly if (24) is considered, there Is degeneracy in the following situations

- all the stations are in the same plane (a 2-D subspace)

- all the stations are on a general quadric surface with the source as one focus

- all the stations are on a well defined part of a general quadratic

(which may degenerate into two planes) whose center is the source.

Surface of the Sphere

Letting

x, y z 2l -cosr, -sin r

xN YN zN -carN sin rN

equation (25) may be rewritten as

o

Yo
:..M zo  , 0

coi r

L sin rJ

* with

X0
2 +,O+ 0

2 - i

c + jn 2
* I (B3)

Obviously if p(M). 5 the system does not have any solution (p denotes the matrix

K1

36
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rank).

If p(M) 4 there exists a vector

t . ( z, ,sv]T

such that

M t *0

However, if

~2 29 2 2 + 2 ,X2 + Y2 + 2 ,,u + v2

(B3) will not have a solution. Now if M arises from a set of perfect data for N

stations then p(M) < 5 ; if p(M) - 4 then (B3) has two solutions and only two, one

being the opposite of the other.

Degeneracy arises only if p(M) < 4. Thus conditions for degeneracy are obtained

by determining the configurations for which the source and N z 4 stations give an

M such that p(M) 3. Let

u a cos r

and

v - it r ,

then p(M) . 3 Is equivalent to the existence of two 5-tuples (a, b,c, d, e),

(a', b',c', d', e') such that:

ax + by + ez + du + ev - 0

a'x + b'y + c'z + d'u + -'v 0 (B4)

If

d e
det 0

do el



then

Hence u can be interpreted as the cosine of the distance to the point (A, B, C) and as

the cosine of the distance to the point (A', B', C'). Thus ( I - i,' )1/2 is also the cosine

of the distance to the great circle whose polar point is (A4', B', C').• But ( I - v2 )l/2 is

U, therefore the two conditions (BS) are equivalent to saying that the distance to

the point (A4, B, C) is equal to the distance to the great circle with polar point

(A', B', C') and that is the definition of some type of spherical conic . Moreover,

since u - cob r, the source location is at the point (4, B, C), one focus of the conic.

Ther ae still some other cases of degeneracy, not given here.

Domain of Unlocatability

When the configuration of the stations and source is close to degeneracy the

solution is very sensitive to the noise in the data whatever the procedure used to

find this solution. The determination of the domain of unlocatability of the source

given a configuration of the stations is therefore of basic interest.

Considering the problem of location in the plane, if the N stations are on a

straight line the domain of unlocatability is the whole plane. If N - 4 and the

stations are not aligned then there is a pencil of conics going through the stations

and part of the unlocatability domain is the locus of the two foci of these conics. If
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N - 5 there will exist in general a conic going through the stations locations so that

the unlocatability domain will consist of the two foci of this conic.

If N > 5 one may try to define which configuration(s) of the stations optimizes

the conditioning of the problem; however if N is very large a deterministic

optimization is not necessary. A random scattering of the stations is sufficient since

it can be shown ( using the theory of random matrices ) that for sensors distributed

at random and independently in the space, the probability of poor conditioning of

the equations obtained from N sensors ( defined as the sum of the distances of the

sensors to the closest configuration of degeneracy being less than some threshold )

follows asymptotically a Poisson law whose mean is an increasing function of the

density of the sensors and of the threshold. Hence for large N the probability of

near degeneracy when the stations are randomly distributed is extremely small.
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DISTRIBUTED PROCESSING IN ESTIMATION AND DETECTION4

E. Verriest, B. Friedlander and M. Morf

Abstract

The need for decentralized computation arises in many problems and

applications. One of the prime motivations is to try to keep the communi-

cation load between different sites or even between different local pro-

cessors down. In the case of a distributed sensor network (DSN) an

enormous amount of raw data is generated by the sensors, generally dis-

tributed over some area. In this paper we shall have a closer look at

some distributed forms for optimal estimation and detection problems that

arise in such a network.

A proposed batch algorithm is believed to be new, as well as a

step-by-step algorithm when sensor parameters are a priori unknown. It

has the added feature that it remains suboptimal under sensor failure.

The basic questions are: What information should be exchanged? How

should it be combined?

Information Systems Laboratory, Stanford University, Stanford, CA 94305.

Systems Control, Inc., Palo Alto, CA 94304.

4This work was supported by the Defense Advanced Research Projects Agency

through contract MDA 903-78-C-0179, and the facilities at the Stanford
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1. INTRODUCTION

The need for decentralized computation arises in many problems and

applications, such as power networks [ 1], distributed sensor networks

[2 ] and others, see, e.g. [ 3 ]. Briefly we can mention that one of the

prime motivations is to try to keep the communication-load between

different sites, or even between different local processors down. We

assume that there is a limited communications bandwidth, or that the

communication costs are relatively high compared to computation costs.

In the case of a distributed sensor network (DSN) an enormous amount of

raw data is generated by the sensors, generally distributed over some

area. The different sensor sites are envisioned to be connected via a

computer network. Not all of the data may be relevant; furthermore,

many of the computations with the data involve only parameters and data

related to one 'station'. Therefore such operations can be performed by

a processor near or at the sensor site, and only some preprocessed results

need to be communicated to the central station, or a user on the network.

The detection and tracking of low flying aircraft and cruise missiles

is one example where distributed sensor networks are of interest. The

sensors can be active or passive, but the generated amount of data is

iarge compared to the number of parameters or states to be estimated.



When we have a completely centralized scheme, i.e., all the data is

communicated noise free from the sensors to one location, then it is

well known that the minimum error-variance state estimator is given by

the Kalman-filter for linear models.

Other applications - as in power systems - deal with the state

estimation of a large number of interconnected subsystems. Many attempts

have been made in the past to decentralize the Kalman-filter, and both

optimum and sub-optimum algorithms resulted [3].

In this paper we shall have a closer look at the possible distribu-

ted forms for optimal estimation and detection problems. The basic

questions are: What information should be exchanged? How should it be

combined.

Section 2 handles the simplest case of parameter estimation, or

systems with no dynamics, introducing the basic tools in more detail and

providing the most insights in the distributed aspects.

Section 3 extends these results to systems with dynamics, e.g.,

tracking problems, for which an optimal step-by-step update of the esti-

mates is demanded (i.e., getting real time estimates).

This requires substantial communication, and the problem was treated

by Speyer [4] and others F5,61. However, the algorithm proposed by Speyer

(1) (i)implies the knowledge of the measurement parameters (H ,R ) of each

substation beforehand. This is an unlikely situation in many applications.

for 'Instance when the sensors are mobile and the measurement parameters

lependent on the coordinates of the node. We present here an alternative
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algorithm that does not require this a priori knowledge but by necessity

then results in a higher number of data to be transmitted. In Section 4,

we shall look at a distributed batch-processing algorithm. This is appro-

priate if one does not need estimates at every time-point. We give a

development of such optimal "block" processing based on our scattering

* *approach [7] in order to gain more insights in the various possible forms

of distributing computations and exchanging information, i.e., measured

data or partial estimates.

A brief discussion of the static and dynamic detection problems is

presented in Section 5. Features of the algorithms are reconfigurability

reduced communication requirements and survivability (i.e., robust, sub-

optimal by partial breakdown). Flexibility from the user's standpoint

can be incorporated in a hierarchical system design (local regions, area

coordinates, etc.).

S ."
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2. PARAMETER ESTIMATION

This discussion is focused on algorithms that lend themselves

naturally to distributed processing. We shall first consider the static

estimation problem, since it leads to the simplest example of a distri-

buted estimation algorithm, and will therefore give the most insight into the

problem of distributed processing. These results will be used in Section 3.

In this problem, x is an n-dimensional vector of unknown para-

meters, which we would like to estimate. We will assume that all the

information that we have about x are some (noise-corrupted) measurements,

and some a priori information. Suppose that the uncertainty in this a

priori is specified in terms of the second moment of x. The prior

information about x is then given by

E[x3 = x (2.1)
0

E[iY] = (2.2)0

where E denotes expected value. In the rest of this paper, we assume

for simplicity that x0 = 0. The measurements are situated at disjoint

locations Ni, i = 1,...,r. This may be disjoint in space (disjoint

sensors) as well as in time (as is the case in batch processing of repeated

measurements), or a combination of the two. We do not have to discrimin-

ate between space and time here, because in this problem, no dynamics are

involved, and therefore, there is no time evolution. We shall refer to

N. as 'station i'.

Let N. have p. measurements, modeled as:

y H x+ v i =  ... ,r (2.3)

where H. is a pin matrix, denoting an 'observation matrix' that

.'4
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depends on the node (or station) N. The term v. represents the

measurement error, and is modeled as an 'observation noise'. We shall

assume that the pi measurements at N. are unbiased, i.e.,
(2.

E v = 0, and that further the observations are uncorrelated, and

'reduced' (i.e., have unit variance) E v v I. These assumptions

entail no loss of generalization, since we can always preprocess the

data for an arbitrary measurement error variance, provided that this

variance is nonsingular. Indeed, let in general E v(i)v(i) " = Rv , then

z . y. are the 'reduced' observations, because then:

z ( H x + R v H x + v (2.4)1. v

where
E M - /2 E(i)
Evi" = Ev0 (2.5)

Evi)(iv = R-/ Ev v R = I .(2.6)
E -VMV 1 R- /2 E (i)v(i) R-T/2 1(26

V V

It is clear that this preprocessing involves only one station, and there-

fore can be done locally, without any communication with other locations.

Also v i  is assumed to be uncorrelated with the parameter x, and

all measurements performed at stations N. , j # i.J

With respect to a spatial distribution of the Ni, it means that

the measurement errors at one station are uncorrelated with the errors

at another station, in most cases, a quite reasonable assumption. If

we consider temporal distribution (batch processing) it means that the

measurement errors in one batch are uncorrelated with those in previous

batches. For the moment, we will leave the idea of distributed organi-

zation, and present the optimal solution without decentralized considerations.

6 3



ADefine:

y I v()

y , v = L (2.7)

_(r) I  (r)J

so that the 'global observation' equation becomes:

y = Hx + v (2.8)

-V

It is now well known (e.g., see [8,9]) that the linear-least-mean-square

estimate of x given y is given by:

- (E xy')(E y') - (2.9)

By direct verification, it is clear that:

E yy = HIH + I

E xy' = H'

- qSo:

H H'(H H H" + I)-  y (2.10)

After combining the a priori with the observations, the remaining

uncertainty in x is given by:

t~i- P = E(x-x) (x-x)'

which after some algebra yields:

P = r-lH'(H H' +I) H7 (2.11)

Using the matrix identity

(A+BCD)-1  A -A B(C +DA- B) DA-

we obtain (2.10) and (2.11)

x"= + i H)(i) I H (i). (2.12)

and

P"= + H H ) (2.13)

6
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We can now compare the use of formulas (2.10) and (2.11) with those of

(2.12) and (2.13).

In case the observation matrices are known a priori by the central

processor, then each station only needs to send the observed data, or its

equivalent. Under the assumed knowledge of H, the posterior error

covariance P can be precomputed by either (2.11) or (2.12). The story

is different for the estimates. Either each node transmits its pi data

to the central station, which combines these according to the formula (2.10)

or each station precomputes a "partial estimate" z(i) H i) y(i) (or

PH(M/ y M in case all nodes have a "copy" of the observation model

(2.8)).
r L

The first method results in j Pi = p-r data transmissions (p is

the average number of observations per station) while the decentralized

computation scheme requires only nr data transmissions. Savings in

communications are thus substantial in a many-observation situation (i.e.,

p > n). This is even more so if the observation parameters from each

node have to be communicated. As indicated by the summation over i, the

formulas (2.12) and (2.13) lead naturally to a distributed scheme.

Now, next to computing the z )
, each node N also forms theNi

Wi (i), M1 M1 M1

matrix L = H H of dimension n x n. Then z and L are

transmitted to the central processing station. Note that because of the

M rn(n+l)
symmetry of L there are only 2 independent quantities. Thus

* 22

node N. transmits n + n(n+l) - + n numbers to the central pro-
a.2 2 2

cessor instead of p (from the data) and np from H(i). The central
Sii-

Sprocessor then adds the L to ,computes this inverse, and

post-multiplies by the sum of the z

- .7
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In the case of a spatially distributed system, we have savings in

data transmission with distributed processing (versus centralized) if
> n nn

" "P> + n which can be simplified to pi > + 1 (since n and
i.2' n+l -

Pi are integers).
2nl +3n

The total over all r stations involves: r 2 transmissions
r

for the distributed scheme, versus ( (n+lXpi = (n+l)p for the trans-
i=l1

mission of the data to a central processing unit. Again the trade-off
2n +3n (~ ~ rruhy

is: r (n+l)p or roughly: k> 2 + 1. If we consider the batch

processing, the above holds if we substitute 'number of transmissions'

by 'number of memory locations.' Of course, computational costs and trans-

mission costs may be weighted differently, so that the trade-off between

communication load and the computational burden at a station may be

expected at another value of p/r.

There are very many details that it will be necessary to deal with

in any actual implementation of an algorithm such as the one described.

To mention a few of the possible refinements, we can, instead of having

all r stations transmitting to the central processor, have a tree-type

communication network, e.g.,

6 7
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or, even simpler, a 'linear'structure

2 3

4 7

5

~(i)

In the latter, all stations compute their z and LM, but now,

station N waits for transmission until it receives zl) and L~l)
2

and computes

z(2) =z (1) + z(2)

-(2) = L(1) (2)

-2-(2)()(2
Now it sends z and L across to (3) instead of z ,z (

L (1) ,L (2 ), thus 'compressing' the data. Clearly, there are again

r n(n+3) transmissions needed, but depending on the sequencing, the
2

distances involved might be shorter, and also more processing goes on at

the nodes 2 to r, and less at the central coordinator. In case of a

temporal distribution, this is even clearer. From the first batch z

and L are computed and put into memory (the line in the figure denotes

* now temporal evolution rather than geographical routing). When the second

(2) (2)
batch is processed, the z and L are added to the contents of

the memory, and therefore can be stored in the same memory unit. Appen-

dix A describes a further refinement for the computation and possible
L'.- (i)

reduction in the transmission of L using square-root methods.

* 9
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3. THE DYNAMIC ESTIMATION PROBLEM: REAL TIME UPDATES

3.1 Problem Formulation

We consider here the state estimation of a linear dynamic system.

We shall only be concerned with the discrete-time formulation of the

problem, undoubtedly the most practical for digital computer applications.

We assume that the knowledge about the initial state of the system can be

modelled with a Gaussian distribution, as we did in the previous section

(the a priori knowledge of x). The inputs to the system are supposed to

be purely random, uncorrelated with the initial state (x ) and are
0'

modelled as "white noise."

Let the state model be:

St+ I  Ftx + u t  (3.1)

with xt  the unknown n-dimensional state at time t, under the assump-

tions:

×o N~X X IO] (3.2)

u t ~N[O, Q t] (3.3)

and

E[u t Us] = 0 if tgs (3.4)

E[ut x63 = 0 for all t (3.5)

The nodal observations form a time-sequence, where at each time instant

t we have:

10
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(i) Ci) vCi)
Yt = Ht xt +vt ; i=l,...,r . (3.6)

For generality we consider time variable observation noise characteristics

Ci)
E v = 0

t

E v(i) (i) R(i)(3E v -- R~ (3.7)
t S t ts

A special feature of the decentralization of the sensors is the fact that

the measurements are completely independent and therefore that the noise

at different nodes are independent:

Wi (j)
E v t = 0 V t,s if i~j (3.8)

The last assumption that we shall make is the unco.'relatedness of plant-

and observation noise:

(i)u' = 0 V ts; Vi (3.9)

t s

Defining the quantities yt, Ht, and vt  for each time instant as in (2.7),

then we get the time-indexed equation (2.8):

= Htx t + v t  (3.10)

By virtue of (3.7) we have the combined noise characteristics:

E v t = 0

E v v' = Blockdiagonal - R (l) .Rr) (311)
1L t " t,
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The optimal solution of this estimation problem is given by the well-

studied Kalman filter (e.g., see [8]). This gives a step-by-step

up-dating method which incorporates a "time-update" and a "measurement

up-date."

(i) (i)

3.2 Decentralized Estimation with Known Observation Parameters Ht__Rt_

In the context of stochastic control, Speyer [4] recently gave a method

for a distributed optimal step-by-step solution. Since there the goal is

to make a robust optimal decentralized controller, a "best" estimate is

necessary at each node N i . In case a node is isolated from the network,

a "local" Kalman filter gives a local (sub)optimal estimate, and this is

used for the state feedback controller. With the network available, addi-

tional outside information is used to upgrade the estimate. In order to

accomplish this, Speyer's algorithm requires each node to conpute another

n-dimensional vector based on its local data. The local estimate and the

additional vector are released to the network and all nodes or a central

node that have access to these 2n-r parameters can combine these to find

the optimal estimate (thus coinciding with the estimate, computed from a

"global" Kalman filter).

For completeness we give here the algorithm in a slightly modified

fashion, but equivalent to the original. The details of the derivation can

be found in L4 i . i) (i) (i),

First, each node computes the local estimate, based on ZM =(
t 0y .. y

by a local Kalman filter:

-(i) _(i) W~) (0) H(0-1(i)
Xt4lI t = Ftxti t-1 + Kt (Yt H t xt til )  (3.12)

12



x 0)X0

K ()= F P WH W(H ()P WH() i (3.13)

P W = F P WFF + Q -K ()( (i~ ) _H() 'R (i )K (Of

(3.14)

There are many other ways to write the equations (3.12) to (3.14), which

is optimal is not the issue in this paper, since only local processing gets

involved. The local estimates of (3.12) are now combined to form the
r 

)
estimate given all the data =t U zci) as:

xtlt= F L jt1 i + H ''CR' 1 ' H t)F t ~~ h

(3.15)

where P ti is the global filtered estimate error covariance

P_1 P))+ ( W)(RW H Ci) (3.16)

ijt~-1 l t

P=F Pt F + QPOl = 0 (3.17)

and h is the additional data-dependent n-vector which is locally
t

updated from:

(i) i) (~i) i)h~i h + hx)CYi h 0-3.8
t+l "t+l t +Pt+l t+llt ' 0 -0(.8

13



where:

At P P-1At = Pjt] tjt t-i t (.9

(i) _F M 1 -1 (i) - .(3.20)

In the original paper Ft was taken to be constant. The method fails

when Ft  is singular at some time. As indicated earlier, only data

(i)
acquired at node N.i is needed for the calculation of Xt+llt and

(i) but the computation of h (i) the knowledge of Pi andht~~~l' t~~~l ~assumesthknweeo P t ad

Ptjt_ 1  a priori, through the formulas (3.19) and (3.20). From equation

(3.16) this boils down to the a priori knowledge of the observation process

of all nodes NA

Another disadvantage of this method is the fact that by breakdown the

computed best global estimate is no longer (sub)optimal, although locally

suboptimal estimates are computed. Indeed, if as suggested by Speyer the

Ptit and/or P tjt-l are precomputed and then fixed, the global estimate

(3.15) will only be optimal if all terms in the summation are accounted

for (i.e., if all nodes communicated their Xt+l t  and hti) A modifica-

tion which would still yield suboptimal global estimates will have to

compute the Pti t  in real time and based on the effectively linked stations

in the network at the given time. This will again require transmission of

this real time computed global error-covariance to all nodes, so that robust

estimates can be formed. We can conclude that the above-discussed algorithm

is efficient in the context of distributed control, where it is the goal to

obtain fault-tolerant local controllers, which were suboptimal when there

was a breakdown in one or more of the links of the system. The algorithm

14
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is communication cost-effective if the observation parameters are known

a priori. The global estimate is not robust.

3.3 Decentralized Estimation with Unknown Observation Parameters

If we pursue a different goal: an optimal global estimate which

remains suboptimal when data from one or several nodes is interrupted, and

which requires the least amount of data transmission, the following algor-

ithm can be used. The development is along the same lines as in Section 2,

although the results are believed to be new.

To account for optimality in the presence of failures, we will assume

that the number of participating nodes is time variant. Thus in (3.6) we

set r = r(t). Moreover, we will assume that only at time t, the value of

r(t) is known. In this situation, the global error-covariance P cannot

be precomputed as is needed in Speyer's method. We will give the solution

for the time update and the measurement update separately, basically because

for the latter, we can use the results obtained in Section 2.

Measurement Update

At stage t, we suppose that r(t) stations perform the measurements

(3.6). Previous to this the best estimate (globally) of the state vector

x(t) is x(tlt-l) (i.e., the optimal estimate given data up to t-l) with

error-covariance P t-lt1

First, we reduce this problem to the parameter estimation problem of

Section 2. Introducing "normalized" observations:

(i) ( Ri)_-1/2, Wi .WC)Rt = Yt -Ht xtt t-l)) (3.21)
- t - t t

15
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we obtain:

(i) _(i) _1-/2 W(i)2 (i
:It FR [t H t  (x(t)-x(tI t-l))+[R ti-/v t  (3.22)

and it is easy to check that the a priori x(t it-l) = x(t)-x(t it-l ) has

zero mean and covariance Pt~t-I while the second term in (3.22) satisfies
-(i) -(i)

the conditions (2.5) and (2.6). Defining H t and v t  as in (2.4),

the equivalent measurement is:

W" _ ()i
It = H t)3(t~t-1) + v-t  (3.23)

From Section 2, the measurement update -- incorporating the measurements

at time t -- yields by definition the estimates x(tjt), and is given

by equation (2.12)

-i r(t) _(i) W().- r(t)-_(i), (i
=(P tj t-i+  Ht /Ht H Ht (3.2i)

Si=l t

or, after back-substitution to the original parameters:

r(t) (.) -W 1iW 1 r(t) (i)
x(tjt) = (P tlt - l+  H '(R )t  H )(Z H '(R ) Vt

-]

+ Pt, t-1ix(tlt-1))

(3.25)

If, based on the (global) estimate x(t i t-l) and the data y , we want

a "local" estimate at node (i), then we have:

16
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x (tl t) = (P tt+H(i)t C t )) lli)) -1 (Ht i)(R i)lt Yti)

+P X(t t-1)) (3.25)
l iIt-)

The error-covariances of the global and the local estimate are respectively:

I r(t)lH (i)f R M) 1 H -

-1 P +7 t t (3.27)tIt = t-l i=l t

M(), (i -l(i) Ptt- +H'(R H (3.28)
Pt~t = j- t t tI

Remark 1: We assumed that the global estimate P is always available
t*.t

since this was our prime goal. Local estimates are not necessarily

computed.

Remark 2: From (3.27) and (3.28) the following relation between local and

global estimates can be proven:

r~t) C)-

P = F tit] + (l-r(t))P ttt (3.29)
- ' i=l

St

It is now clear what preprocessing can be done locally in order to

compress the data. At each node, the data vector y and parameters

Ci) Ci)
SHt and R )  are combined to retain the "compressed" data:

t t t t

and

* 17
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Li H(i)'(R i)) -1 i  . (3.31)
L. t Ht (Rt Ht(.1

Several different situations may occur, whether or not the communication

between the central station and the link N. is two-way, one-way or1

broken down.

CASE (1): Station N. is linked to the network and global informa-1

tion is accessible.

According to (3.28), Pt t can be computed at N.i, and a local

estimate (3.26) may be computed "for later reference" (i.e., if at the

next step the station should be disconnected from the net). To the central

station, or one of the nodes performing as such, z i  and P or

L W is sent. The latter matrices are symmetric of size n x n. There-
t

n(n+l)fore they contain only 2 independent parameters. Ir total

n(n+l)2 + nP i parameters have to be transmitted.

CASE (2): Station N. is linked to the network, but has no informa-

tion back from it.
Ci)

In this case the local error covariance cannot be computed. Thus zW
t

and L have to be sent. A suboptimal local estimate can still be
t

calculated. In many cases some a priori information about x will be
t4

available (e.g., from a previous time update). If absolutely nothing is

known, it means that the a priori estimate can be artitrary, but with

infinite variance. This is equivalent to setting Pt equal to zero

in the formulas (3.26) and (3.28).

The local estimate is;

18



.-t~) '(i).-i (i),(R(i))-1 (i) (.2
xi( t t )  (t t) Ht (t ) t (.

where we set:

- tIt H t (R ) H = Lt  (3.33)

Thus L is to be interpreted as the local error-covariance in the
t

absence of a priori information.

CASE (3): Station Ni  does not contribute to the network.

Local estimates can be updated (suboptimal) with or without the

access to x(tIt-1) and Pt ft-" At the central node, global updating

only accounts for the cooperating nodes, i.e., the cases (1) and (2)

above. If nodes Ni; i=l,...,r(t) are these cooperating nodes at t,

then equations (3.25) and (3.27) (or (3.29)) are used to compute a

global filtered estimate.

*o 19
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C Time Update

The next step is to compute the new predicted estimates x(t+lt)

from the filtered estimates x(tJt). Given all data up to time t,

we write from (3.1)

-t+llt = FtxtIt + utlt (3.34)

Since u is uncorrelated with the previous noise u and v for

s < t, and with x0 , we have that utit = 0. The time update is

therefore simply:

A A

Xt lt = Ftxt t (3.35)

and

Pt+iIt = FtPt tFt + Q (3.36)

for the global estimates, while the local time-updates are:

A(i) ^(i)
x= F tx (3.37)

C(i) C i) ,

'-= F tP t Itrt + Q. (3.38)

If the emphasis is on an optimal global estimate, the centralized node

updates from (3.34) and (3.35). A reason for local computation of

estimates is for robustness and optimality. If for instance N is

*cut-off from the network but local estimates are updated, then the global

estimate can be upgraded with this "combined" information at N as soon

20
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as the link is restored, and thus not all the data is lost.

* The above discussion indicates that there are many ways of organiz-

ing the data traffic, and it seems fruitless, if not impossible to give

all details.
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4. THE DYNAMIC ESTIMATION PROBLEM: BLOCK PROCESSING

4.1 Problem Statement

For the problem, described in Section 3.1, we give here an optimal

solution in case one does not need the estimates at each time instant,

or in case the communication is impossible during intervals of fixed

length. In the previous section we mentioned the case of an "isolated"

node. During its cut-off time, the new incoming data was gathered and

processed to update the old local data. These resulting data were trans-

mitted at the time the link was restored, and incorporated in an optimal

forward" way. At that point the globa" estimate will not equal the

optimal estimate provided by the Kalman filter that had access to all

data yt at time t: This loss of accuracy is balanced by a gain in

communication and time. Indeed to provide the best estimate given all

the data, including the batch of missed data, the global estimator

would have to recompute previous error covariances and estimates, thus

momentarily slip back to the instant the node was cut-off and reprocess

the accumulated data step-by-step.

We present here an alternative method for the case where the system

parameters are a priori known, and each node has a copy of this available.

The data is gathered in batches at each node, and synchronized with all

stations at the end of the interval, the accumulated processed data is

sent to the global estimator, which then proceeds to compute the optimal

global estimate. For the development of the algorithm, our scattering

approach to the filtering and smoothing problem is used L7 since it

provides a direct insight into the method.
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4.2 A Distributed Block-Processing Algorithm

r- (i)We have seen that the quantities Hy s  Hs Ys = zs-.. i=l i=l

-. ' r r~)Hi i
and HH = H ( = L lead to a distributed computationSs S S S

-. i=l i=l

in a natural way.

In a step by step updating algorithm, then, we compute locally the

(i.(,
L and z , transmit these data to the central station, where now

s s

the updating occurs (i.e., one 'layer' is added to the scattering picture.)

Further distributing is possible if we can divide the whole estima-

tion interval (r,t) up in some subintervals of each, say, a steps long.

The a elementary scattering layers can thus be combined to a scattering

layer representing such a subinterval. The 'parameters' are:

["(s+a,s) P(s+G, sJ

S (s+G, s) (4.1)

C T s)j

These parameter-matrices can be computed if (F ,G Hs ) is known.

Further, we can also combine all sources into a qo(s+<a,s) and

b- +
'.."q (s+',7, s).•

00
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Suppose now that our model is stationary. Then for each 'time slot'

the D,P,C and , = are the same, and so are the gains G. and
1

G i = 1,...,a where we define

a-i
+ +
q 0 (s+as) G z(s+i)i=l 2.

(4.2)

qO(s+G,s) = G" z(s+i)i=l 2.

Now, we let each station compute locally: q+(i) and qo() in a certain
0 0

subinterval (say k) (which is done sequentially). At the end of the sub-

interval (of length a) the "data" q 0) and q0  from all stations

N. are transmitted to a 'central location', where the data is combined
1

and the whole scattering layer is formed, i.e.,

r r

While the stations proceed now gathering more data and computing the
+

values for q and q0  in the subsequent subinterval, the central station

combines the (combined) picture of the previous k-i subintervals with

+
the kth one, thus obtaining the , ,P,,qo and qo over the interval

(:,j+ka) (Fig. 4.1).

S o(z+(k-l)a,T) S o(+kat+(k-l)a) So( I+k,T)

Finally, when the last subinterval is processed, the 'boundary layer'

representing the initial condition is attached, and the estimates are

computed. We can represent the above procedure on a space/time flow-

chart, the vertical direction being time, the horizontal direction the

space. For clarity we only display one substation; (Fig. 4.2).
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The Algorithm:

1) Precomputation of the "Data-Gains" and "Block Parameters"

If the parameters are not constant, they have to be recombined in

each interval by iteration of the scattering formulas in order to obtain

the "block-scattering parameters" subject to the initial conditions

[7]. In Fig. 4.2 this is indicated by the box containing (

The gains G +; G- for s = 1,...,c are also obtained by iteration [7].
s s

All nodes are supposed to have these parameters available.

2) Local Data Processing

+(i) -Ci)
At the beginning of each block we reset q+ and qs to

zero. As data comes in, we proceed step-by-step

(i) '(i) (i)

s =q s s

+i) +(i) + (Mq = +Gcr-z

until s = a when the contents of q+(i) and qi registers are
5 5

sent to the central station.

3) Central Computation (kt h Block)

The new block is added to the previously combined k-l blocks. As

shown in Fig. 4.1, the composite is given by the Redheffer "star-product"

[10]:

26
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] BJ 11 - b:1 A
-lb( -l m7  (4.4)

C Dc +C(IbC)- a d(I-Cb)-

The internal "sources" are similarly combined:

_ +]r = (I-bC)- (q ++br -)L~i~[:] +[r~r+ 
:] - (.5Q+] [q r d(I-Cb) (r +Cq

Finally, the filtered estimates x(tft) at the end of the kth block

are found by "appending'" the end-conditions ?\(t It) = 0. The initial

("boundary layer" accounts for the a priori knowledge. This layer is

represented by:

~ 0 (4.6)

Comparison of number of data transmissions in Section 4 and Section 3.

1. Step by step Kalman Filter.
n (n+l)

Each sampling instant requires 2 + n numbers to be sent.

Thus, in total for an interval of length t - 7

2n + 3n
#=(t- ) 2

2. 'Partitioned' filter.

(Note that we discussed the smoothing problem here, but the filtering

formulas, and therefore the procedure, are identical in form).

There are now t transmissions required of the 'data'

qo and q 2 vectors of size n. Thus:
0 0

t - 2n
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5. DISTRIBUTED DETECTION ALGORITHMS

A common problem in sensor-systems is to decide whether a signal is

picked up, imbedded in noise, or if we only "observe" the noise. These

signal-detection problems arise in radar, sonar and seismic sensors.

There are two hypotheses:

0: signal plus noise is observed;

1I: noise only is observed.

More general we shall consider the case where there are M hypotheses.

The observations are then likewise used to decide which of the M models

corresponds "best" to these data. There are many other applications for

hypothesis-testing; for instance: component failure detection, pattern

recognition, system identification (9]. Details on the theory can be

found in many books, e.g., [9,], (11], and (12]. Here we shall look at

some particular cases.

21
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5.1 Static Systems Hypothesis Testing

Suppose again that we have r disjoint sensors Ni; i=l,...,r

(i)
where observations y are made. Let us have the following M

hypotheses (at each station):

): y = H. x +v , j=I,...,M (5.1)

where

x. is N(O.J) (5.2)

(i) (i)
vM is N(O,R. (5.3)3 3

and further x. and vM. independent, and v M-independent from all
WJ 

J
Ci)

vk if .e/i.

Clearly, the hypotheses are about the same (global) parameter x

that may assume the values xl... X. Therefore if we consider the combined

problem by stacking together the observations from each node, then we

have not Mr but still r hypotheses.

1j: y = H.x. + v. , j=l,...,M (5.4)

where y., H. and v. are defined as in (2.7) and
3 3 3

E vjv'I = Block diagonal [R ()...R(r), (5.)

It is intuitively clear that by combining data from r sensors, better

decisions will be made than if each detector would "decide" based on its

29
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71

th
own data. The log likelihood function' j for the j hypothesis is

L9 :

2 (y) = c.-y (H n.H' + R , (5.6)

where c. is a data-independent constant determined by such factors as

a priori information on the probability of the hypothesis and the penalties

for incorrect decisions. In general, the decision is then to take the

hypothesis )k if j=k yields maximum j(z). For a binary decision

(M=2) the log likelihood ratio I is more useful:

2(y) I l(y)- 2 (y) (5.7)

The equivalent decision rule is then to compare )(y) to a threshold ?\

which depends again on the a priori probabilities and the costs of incorrect

decisions.

Choose l if 2(y)

Choose U2 if A (y) < ?k

The similarity in the forms of equations (5.6) and (2.10) illustrate the

close relation between detection and estimation, and accordingly distributed

schemes exist.

Equation (5.6) can indeed be rewritten as:

-, ( c /1 - -I - -I

R'= c.-y' y - y R (n -14- R H) HR y (5.8)
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This form makes clear how the computation may be distributed using methods

very similar to what we used in the estimation problem. The local canputa-

tion at node N. involves:
1

L.i = H.i)(Ri)-H.(i

(i) (i), (i)- (i) 

= y (R ) y (5.9)

(i) H(i) (i) -1 (i)
z. = H (R. y3 J 3

The central station then assembles the log likelihood functions:

2 j(y) = c..- ._ z Z ) zr i)) (5.10)

i i=l i=l i=l

and compares them again' each other, to decide which hypothesis should be

taken.

Transmission of the Li) (i) i)
T, 4 and z. ; i=l,...,r; j=I,...,M3 3 3

invlve maimaly %1(n(n+l) n
involves maximally M ( )2 + 1 + n) parameters compared to the

71 (p Pi p+

p j .n + 2  that are required for efficient transmission
i=l i=l

(i) (i) i)
of the y H and R. From the point of view of data transmission,3 3

one prefers distribution if:
I

r r
2 2

n + 3n + 2 (2n++21) P + Pi (5.11)
i=l i=l

31

--



7... r7 -.7 w

5.2 Dynamic Systems: Hypothesis Testing

Just as in the static case, we may expect a close similarity between

estimation and detection and thus the aspects of distributed processing

can also be fruitful in this case.

Of particular interest are the applications to system identification.

Suppose we have M hypothesized linear system models:

x(t+l) = Fj(t)x(t) + u (t) ; j=l,...,M (5.12)

YM(t) = H. M(t)x(t) + v , i=l,...,r (5.13)

with: u (t) = white noise with zero mean and covariance Q and x(O)3 Ji

normally distributed with parameters (0, 10). The assumptions on the

observations (5.13) are as usual, and we may again combine them as in

(5.4).

A decision at time t is essentially based (see C9, p. 286]) on

computation of the M log likelihood functions, and on subsequent compar-

i son.

The j (t) are given by:

tMjt = - (y(t)-H.(t)x (tit-1))'(H Mtpj(tit-1)Hj(t)+Rj(t)) -

s=l 3

' (y(t)-Hj Mtx (t jt-l)) (5.14)
ci c

where x (tlt-l) is the predicted estimate under the hypothesis ). and

P (t t-1) is the corresponding error-covariance.

32
0

.............................................



Various distributed algorithms for the estimation were already consid-

ered in previous sections, and (5.14) can again be rewritten involving the

sums Z. zW~t, 2 )t and L W~)t. We will omit the details.

We end this section with the observation that in the case of non-a priori

knowledge of H and R, the detection problem requires the additional

scalars "4." which were not needed in the corresponding estimation problem.

M- M

In the case of a priori knowledge (hypothesized) of H i) an i)

L".

iit Vh ru datist e rocessed alotitmall inbacessi the estimation preared osld-
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6. CONCLUSIONS

Some algorithms for the distributed estimation and detection of both

static and dynamic linear models with Gaussian modeled uncertainties were

presented. The emphasis was on global estimates and decisions rather than

on the local ones. The detection algorithms were shown to follow in a

straightforward way from their estimation counterparts. Based on our

scattering approach we derived an optimal distributed block processing

algorithm for the case where each sensor has a copy of the system. These

results are believed to be new. Further a new step-by-step procedure in

the case of unknown observation parameters was developed. It allows for

reconfigurability and survivability as the number of participating nodes

may vary, while still suboptimal global estimates are given. If the

global estimate and covariance are fed back to the nodes, virtually every

node can perform the "centralized" computations, thus providing failure

robustness. Finally, prprocessing at the sensor location may enclose some

valuable information about the sensors or their location, a welcome feature

in some applications.
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APPENDIX A

A note on the transmission of the quantity L( i)

(i)
We assume that x and y are respectively n- and pi-

dimensional. Then H (i) has pi'n parameters. L (i) is a symmetric

nxn matrix, and therefore contains n(n+l) independent parameters.
2

For this we could for instance take the lower triangular part of

L(i), denoted as [L i)]+ (Thus an additive decomposition of LM

(i)
or we may consider a multiplicative decomposition of L into its

Cholesky triangular factors. We shall consider in greater detail why

we might do this.
4

1. Additive Decompositions

Obviously to get [L (i) from L(i) no additional computation at

station N. is required. If at station N. the information of station2. J

N. is to be added to the local information, then simply station N.

performs:

i) L (j ) 
- [L()]+ local information

ii) [L(J)]+ = [L(J)] + + [L(i)]+ updating with information

from N.
1

Again step ii) is a simple set of n(n+l) additions of scalars, and

the result is in a direct transmittable form. The 'end station' needs

to reconstruct the L from the [L] +: this is a simple information shift.

A note about secure transmission: For instance, in a tracking problem

the parameters in H(i) depend on the local coordinates of the tracking

station, and in some applications we may want to keep this secret.

But now:

A.1

I

S. . . . . . . . . .



p.-

[L W(i) Hk>()
]+kZ = mkm= 1

n______ (MThis yields nin+l) equations for the pin unknowns H2 . kZ

If pi these nonlinear equations can be solved, at least in principle,
S2

revealing the H() Remember, however, that we opted for a distributed processing

if p > a + i. To keep secrecy, we can inject redundancy (i.e., aug-

menting pi). This has no additional effects on the transmission require-

ments, although it increases the (local) computational burden to compute

L . Another possibility is to scramble the transmitted data [L i],

but then it has to be descrambled.

2. Multiplicative Decomposition

Each station does a triangular factorization of the data L

Let U be a lower triangular factor of L , then:

H'H = L = U U

That means that at station N., we do not have to compute L (i ) actually,

but just a triangularization of H' (by column operations)

If station N. transmits the data U to N., then N. can directly1 J 1

compute an update U incorporating his own data H(r)  Indeed,

performing column operations on the array yields the lower triangular

factor U

M 1)

niJ[ H T U 01
n i Pi

* A.2

% %,



So, local information processing and updating (or combining) can all be

done in one step. Further, if

H'H = U U'

then U is of the form n 3
"- n

p
Let p be the number of nonzero columns, then p is the number of

S observations at the station, and these p columns are a scrambled version

of H'. But again since H'H is then known, we can solve for H if

n+lSPi <  2

Similarly, if we know the incoming and outgoing U to a station,

then:

Nu( )u(J) - (i)u U M , H( ) H(J)

and H can be retrieved if the number of nonzero columns in the tri-

angular factorization of u - u(i)u(i) is less or equal to

" n+l

2

Thus sending the parameters in 'square-root' form does not provide

us with higher secrecy nor simplicity, but might be preferred if the

inverse of a triangular matrix is found by simple substitution, and the

-I
inverse of the square root of M is the square root of M , whereas

in general [M? I I LM +

A.3
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